ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=ax-lnx+1£¨a¡ÊR£©£¬g£¨x£©=xe1-x£®
£¨1£©Çóº¯Êýg£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄÖµÓò£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýa£¬¶ÔÈÎÒâ¸ø¶¨µÄx0¡Ê£¨0£¬e]£¬ÔÚÇø¼ä[1£¬e]É϶¼´æÔÚÁ½¸ö²»Í¬µÄxi£¨i=1£¬2£©£¬Ê¹µÃf£¨xi£©=g£¨x0£©³ÉÁ¢£®Èô´æÔÚ£¬Çó³öaµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©¸ø³öÈç϶¨Ò壺¶ÔÓÚº¯Êýy=F£¨x£©Í¼ÏóÉÏÈÎÒⲻͬµÄÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Èç¹û¶ÔÓÚº¯Êýy=F£¨x£©Í¼ÏóÉϵĵãM£¨x0£¬y0£©£¨ÆäÖÐx0=
)×ÜÄÜʹµÃF£¨x1£©-F£¨x2£©=F'£¨x0£©£¨x1-x2£©³ÉÁ¢£¬Ôò³Æº¯Êý¾ß±¸ÐÔÖÊ¡°L¡±£¬ÊÔÅжϺ¯Êýf£¨x£©ÊDz»ÊǾ߱¸ÐÔÖÊ¡°L¡±£¬²¢ËµÃ÷ÀíÓÉ£®
£¨1£©Çóº¯Êýg£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄÖµÓò£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýa£¬¶ÔÈÎÒâ¸ø¶¨µÄx0¡Ê£¨0£¬e]£¬ÔÚÇø¼ä[1£¬e]É϶¼´æÔÚÁ½¸ö²»Í¬µÄxi£¨i=1£¬2£©£¬Ê¹µÃf£¨xi£©=g£¨x0£©³ÉÁ¢£®Èô´æÔÚ£¬Çó³öaµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©¸ø³öÈç϶¨Ò壺¶ÔÓÚº¯Êýy=F£¨x£©Í¼ÏóÉÏÈÎÒⲻͬµÄÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Èç¹û¶ÔÓÚº¯Êýy=F£¨x£©Í¼ÏóÉϵĵãM£¨x0£¬y0£©£¨ÆäÖÐx0=
| x1+x2 |
| 2 |
£¨1£©¡ßg'£¨x£©=e1-x1xe1-x=ex-1£¨1-x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬ÇÒg£¨0£©=0£¬g£¨1£©=1£¾g£¨e£©=e2-eº¯Êýg£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄÖµÓòΪ£¨0£¬1]¡£®£¨3·Ö£©
£¨2£©Áîm=g£¨x£©£¬ÔòÓÉ£¨1£©¿ÉµÃm¡Ê£¨0£¬1]£¬ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄm¡Ê£¨0£¬1]f£¨x£©=mÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý ¡£¨5·Ö£©¡ßf¡ä(x)=a-
(1¡Üx¡Üe)
µ±a¡Ü0ʱ£¬f¡ä(x)=a-
£¼0£¬ÔÚÇø¼ä[1£¬e]Éϵݼõ£¬²»ºÏÌâÒâ
µ±a¡Ý1ʱ£¬f'£¨x£©£¾0£¬ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝÔö£¬²»ºÏÌâÒâ
µ±0£¼a¡Ü
ʱ£¬f'£¨x£©£¼0£¬ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝ¼õ£¬²»ºÏÌâÒâ
µ±1£¼
£¼e¼´
£¼a£¼1ʱ£¬ÔÚÇø¼ä[1£¬
]Éϵ¥µ÷µÝ¼õ£»ÔÚÇø¼ä[
£¬e]Éϵ¥µÝÔö£¬
ÓÉÉϿɵÃa¡Ê(
£¬1)£¬´Ëʱ±ØÓÐf£¨x£©µÄ×îСֵСÓÚµÈÓÚ0ÇÒf£¨x£©µÄ×î´óÖµ´óÓÚµÈÓÚ1£¬¶øÓÉf(x)min=f(
)=2+lna¡Ü0¿ÉµÃa¡Ü
£¬Ôòa¡Ê¦µ
×ÛÉÏ£¬Âú×ãÌõ¼þµÄa²»´æÔÚ£®¡..£¨8·Ö£©
£¨3£©É躯Êýf£¨x£©¾ß±¸ÐÔÖÊ¡°L¡±£¬¼´ÔÚµãM´¦µØÇÐÏßбÂʵÈÓÚkAB£¬²»·ÁÉè0£¼x1£¼x2£¬ÔòkAB=
=
=a-
£¬¶øf£¨x£©ÔÚµãM´¦µÄÇÐÏßбÂÊΪf¡ä(x0)=f¡ä(
)=a-
£¬¹ÊÓÐ
=
¡..£¨10·Ö£©
¼´ln
=
=
£¬Áît=
¡Ê(0£¬1)£¬ÔòÉÏʽ»¯Îªlnt+
-2=0£¬
ÁîF£¨t£©=lnt+
-2£¬ÔòÓÉF¡ä(t)=
-
=
£¾0¿ÉµÃF£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬¹ÊF£¨t£©£¼F£¨1£©=0£¬¼´·½³Ìlnt+
-2=0Î޽⣬ËùÒÔº¯Êýf£¨x£©²»¾ß±¸ÐÔÖÊ¡°L¡±£®¡£¨14·Ö£©
£¨2£©Áîm=g£¨x£©£¬ÔòÓÉ£¨1£©¿ÉµÃm¡Ê£¨0£¬1]£¬ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄm¡Ê£¨0£¬1]f£¨x£©=mÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý ¡£¨5·Ö£©¡ßf¡ä(x)=a-
| 1 |
| x |
µ±a¡Ü0ʱ£¬f¡ä(x)=a-
| 1 |
| x |
µ±a¡Ý1ʱ£¬f'£¨x£©£¾0£¬ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝÔö£¬²»ºÏÌâÒâ
µ±0£¼a¡Ü
| 1 |
| e |
µ±1£¼
| 1 |
| a |
| 1 |
| e |
| 1 |
| a |
| 1 |
| a |
ÓÉÉϿɵÃa¡Ê(
| 1 |
| e |
| 1 |
| a |
| 1 |
| e2 |
×ÛÉÏ£¬Âú×ãÌõ¼þµÄa²»´æÔÚ£®¡..£¨8·Ö£©
£¨3£©É躯Êýf£¨x£©¾ß±¸ÐÔÖÊ¡°L¡±£¬¼´ÔÚµãM´¦µØÇÐÏßбÂʵÈÓÚkAB£¬²»·ÁÉè0£¼x1£¼x2£¬ÔòkAB=
| y1-y2 |
| x1-x2 |
| a(x1-x2)-(lnx1-lnx2) |
| x1-x2 |
| lnx1-lnx2 |
| x1-x2 |
| x1+x2 |
| 2 |
| 2 |
| x1+x2 |
| lnx1-lnx2 |
| x1-x2 |
| 2 |
| x1+x2 |
¼´ln
| x1 |
| x2 |
| 2(x1-x2) |
| x1+x2 |
2(
| ||
|
| x1 |
| x2 |
| 4 |
| t+1 |
ÁîF£¨t£©=lnt+
| 4 |
| t+1 |
| 1 |
| t |
| 4 |
| (t+1)2 |
| (t-1)2 |
| t(t+1) |
| 4 |
| t+1 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿