题目内容
已知点(1,
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
+
(n≥2).
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{
}前n项和为Tn,问满足Tn>
的最小正整数n是多少?
| 1 |
| 2 |
| Sn |
| Sn-1 |
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{
| 1 |
| bnbn+1 |
| 999 |
| 2010 |
(Ⅰ)∵f(1)=a=
∴f(x)=(
)x,
∴a1=f(1)-c=
-c,
∴a2=[f(2)-c]-[f(1)-c]=-
,a3=[f(3)-c]-[f(2)-c]=-
又数列{an}成等比数列,
a1=
=-
,
∵a1=
-c
∴-
=
-c,∴c=1
又公比q=
=
所以an=-
(
)n-1=-(
)n,n∈N;
∵Sn-Sn-1=(
)(
+
)=
+
(n≥2)
又bn>0,
>0,∴
-
=1;
∴数列{
}构成一个首项为1公差为1的等差数列,
∴
=1+(n-1)×1=n,Sn=n2
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1;
又b1=c=1适合上式,∴bn=2n-1(n∈N);
(Ⅱ)Tn=
+
+…+
=
+
+
+…+
=
(1-
)+
(
-
)+
(
-
)+…+
(
-
)=
(1-
)=
由Tn=
>
,得n>
满足Tn>
的最小正整数为84.
| 1 |
| 2 |
∴f(x)=(
| 1 |
| 2 |
∴a1=f(1)-c=
| 1 |
| 2 |
∴a2=[f(2)-c]-[f(1)-c]=-
| 1 |
| 4 |
| 1 |
| 8 |
又数列{an}成等比数列,
a1=
| ||
| a3 |
| 1 |
| 2 |
∵a1=
| 1 |
| 2 |
∴-
| 1 |
| 2 |
| 1 |
| 2 |
又公比q=
| a2 |
| a1 |
| 1 |
| 2 |
所以an=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵Sn-Sn-1=(
| Sn-Sn-1 |
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
又bn>0,
| Sn |
| Sn |
| Sn-1 |
∴数列{
| Sn |
∴
| Sn |
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1;
又b1=c=1适合上式,∴bn=2n-1(n∈N);
(Ⅱ)Tn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bnbn+1 |
| 1 |
| 1×2 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2n-1)×(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
由Tn=
| n |
| 2n+1 |
| 999 |
| 2010 |
| 333 |
| 4 |
满足Tn>
| 999 |
| 2010 |
练习册系列答案
相关题目