题目内容
设全集U=R,A={x∈N|y=ln(2-x)},B={x|x(x-2)≤0},A∩B=( )
| A、{x|x≥1} |
| B、{x|0≤x<2} |
| C、{1} |
| D、{0,1} |
考点:交集及其运算
专题:集合
分析:求出A中x的值确定出A,求出B中不等式的解集确定出B,找出A与B的交集即可.
解答:
解:由A中y=ln(2-x),得到2-x>0,即x<2,
∴A={x|x<2,x∈N}={0,1},
由B中不等式解得:0≤x≤2,即B={x|0≤x≤2},
则A∩B={0,1}.
故选:D.
∴A={x|x<2,x∈N}={0,1},
由B中不等式解得:0≤x≤2,即B={x|0≤x≤2},
则A∩B={0,1}.
故选:D.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
定义域为D的单调函数y=f(x),如果存在区间[a,b]⊆D,满足当定义域为是[a,b]时,f(x)的值域也是[a,b],则称[a,b]是该函数的“可协调区间”;如果函数y=
(a≠0)的一个可协调区间是[m,n],则n-m的最大值是( )
| (a2+a)x-1 |
| a2x |
| A、2 | ||||
| B、3 | ||||
C、
| ||||
| D、4 |
若向量
=(1,0),
=(0,1),且
•
=
•
=1,则|
+t
+
|(t>0)的最小值是( )
| a |
| b |
| c |
| a |
| c |
| b |
| c |
| a |
| 1 |
| t |
| b |
| A、2 | ||
B、2
| ||
| C、4 | ||
D、4
|
若定义在区间[-2015,2015]上的函数f(x)满足:对于任意的x1,x2∈[-2015,2015],都有f(x1+x2)=f(x1)+f(x2)-2014,且x>0时,有f(x)>2014,f(x)的最大值、最小值分别为M,N,则M+N的值为( )
| A、2014 | B、2015 |
| C、4028 | D、4030 |
设
=(cosx-sinx,2sinx),
=(cosx+sinx,cosx),f(x)=
•
,将函数f(x)的图象平移而得到函数g(x)=
cos2x-1,则平移方法可以是( )
| a |
| b |
| a |
| b |
| 2 |
A、左移
| ||
B、左移
| ||
C、右移
| ||
D、左移
|
设a,b为两条直线α,β为两个平面,则下列四个命题中,正确的命题是( )
| A、若a⊥α,b⊥β,a⊥b,则α⊥β |
| B、若a∥α,b∥β,α∥β,则a∥b |
| C、若a?α,b?β,a∥b,则α∥β |
| D、若a∥α,α⊥β,则a⊥β |