题目内容

20.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$(n∈N*).
(1)设bn=$\frac{1}{{a}_{n}}$-1,证明:数列{bn}是等比数列,并求数列{an}的通项公式an
(2)记数列{nbn}的前n项和为Tn,求证:Tn<4.

分析 (1)通过对an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$两边同时取倒数可知$\frac{1}{{a}_{n+1}}$=$\frac{1}{2}$•$\frac{1}{{a}_{n}}$+$\frac{1}{2}$,变形可知$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{2}$($\frac{1}{{a}_{n}}$-1),进而可知数列{bn}是公比为$\frac{1}{2}$的等比数列,通过求出数列{bn}的通项公式可知数列{an}的通项公式;
(2)通过(1)可知nbn=n•$\frac{1}{{2}^{n-1}}$,进而利用错位相减法计算、放缩即得结论.

解答 证明:(1)∵an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$(n∈N*),
∴$\frac{1}{{a}_{n+1}}$=$\frac{{a}_{n}+1}{2{a}_{n}}$=$\frac{1}{2}$•$\frac{1}{{a}_{n}}$+$\frac{1}{2}$,
整理得:$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{2}$($\frac{1}{{a}_{n}}$-1),
∵bn=$\frac{1}{{a}_{n}}$-1,
∴数列{bn}是公比为$\frac{1}{2}$的等比数列,
又∵b1=$\frac{1}{{a}_{1}}$-1=2-1=1,
∴bn=$\frac{1}{{a}_{n}}$-1=$\frac{1}{{2}^{n-1}}$,
∴an=$\frac{1}{1+\frac{1}{{2}^{n-1}}}$=$\frac{{2}^{n-1}}{1+{2}^{n-1}}$;
(2)由(1)可知nbn=n•$\frac{1}{{2}^{n-1}}$,
则Tn=1•$\frac{1}{{2}^{0}}$+2•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+…+n•$\frac{1}{{2}^{n-1}}$,
$\frac{1}{2}$Tn=1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+3•$\frac{1}{{2}^{3}}$+…+(n-1)•$\frac{1}{{2}^{n-1}}$+n•$\frac{1}{{2}^{n}}$,
两式相减得:$\frac{1}{2}$Tn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$
=2-$\frac{n+2}{{2}^{n}}$,
∴Tn=2(2-$\frac{n+2}{{2}^{n}}$)=4-$\frac{n+2}{{2}^{n-1}}$<4.

点评 本题考查数列的通项及前n项和,考查错位相减法,考查放缩法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网