题目内容
(本小题满分13分)
如图,在四棱锥
中,底面
为直角
梯形,且
,
,侧面
底面
. 若
.

(Ⅰ)求证:
平面
;
(Ⅱ)侧棱
上是否存在点
,使得
平面
?若存在,指出点
的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角
的余弦值.
如图,在四棱锥
(Ⅰ)求证:
(Ⅱ)侧棱
(Ⅲ)求二面角
解法一:
(Ⅰ)因为
,所以
.
又因为侧面
底面
,且侧面
底面
,
所以
底面
.
而
底面
,
所以
.
在底面
中,因为
,
,
所以
,
所以
.
又因为
, 所以
平面
. ……………………………4分
(Ⅱ)在
上存在中点
,使得
平面
,
证明如下:设
的中点是
,
连结
,
,
,

则
,且
.
由已知
,
所以
. 又
,
所以
,且
,
所以四边形
为平行四边形,所以
.
因为
平面
,
平面
,
所以
平面
. ……………8分
(Ⅲ)设
为
中点,连结
,

则
.
又因为平面
平面
,
所以
平面
.
过
作
于
,
连结
,由三垂线定理可知
.
所以
是二面角
的平面角.
设
,则
,
.
在
中,
,所以
.
所以
,
.
即二面角
的余弦值为
. ………………………………13分
解法二:
因为
,
所
以
.
又因为侧面
底面
,
且侧面
底面
,
所以
底面
.
又因为
,
所以
,
,
两两垂直
分别以
,
,
为
轴,
轴,
轴建立空间直角坐标系,如图.

设
,则
,
,
,
,
.
(Ⅰ)
,
,
,
所以
,
,所以
,
.
又因为
, 所以
平面
. …………………………4分
(Ⅱ)设侧棱
的中点是
,
则
,
.
设平面
的一个法
向量是
,则
因为
,
,
所以
取
,则
.
所以
,
所以
.
因为
平面
,所以
平面
. …………………………8分
(Ⅲ)由已知,
平面
,所以
为平面
的一个法向量.
由(Ⅱ)知,
为平面
的一个法向量.
设二面角
的大小为
,由图可知,
为锐角,
所以
.
即二面角
的余弦值为
. ………………………………13分
(Ⅰ)因为
又因为侧面
所以
而
所以
在底面
所以
又因为
(Ⅱ)在
证明如下:设
连结
则
由已知
所以
所以
所以四边形
因为
所以
(Ⅲ)设
则
又因为平面
所以
过
连结
所以
设
在
所以
即二面角
解法二:
因为
所
又因为侧面
且侧面
所以
又因为
所以
分别以
设
(Ⅰ)
所以
又因为
(Ⅱ)设侧棱
设平面
因为
所以
所以
因为
(Ⅲ)由已知,
由(Ⅱ)知,
设二面角
所以
即二面角
略
练习册系列答案
相关题目