题目内容
设a=(cos23°,cos67°),b=(cos68°,cos22°),μ=a+tb(t∈R).(1)求a·b;
(2)求μ的模的最小值.
解析:(1)a·b=cos23°·cos68°+cos67°·cos22°
=cos23°·cos68°+sin23°·sin68°
=cos(23°-68°)=
.
(2)μ=a+tb
=(cos23°,cos67°)+t(cos68°,cos22°)
=(cos23°+tcos68°,cos67°+tcos22°),
∴|μ|2=(cos23°+tcos68°)2+(cos67°+tcos22°)2
=cos223°+2tcos23°cos68°+t2cos268°+cos267°+2tcos67°cos22°+t2cos222°
=1+t2+
t=(t+
)2+
,
∴当t=-
时,|μ|min=
.
练习册系列答案
相关题目
设a=30.5,b=log32,c=cos
π,则( )
| 2 |
| 3 |
| A、c<b<a |
| B、c<a<b |
| C、a<b<c |
| D、b<c<a |
设向量
=(cos23°,cos67°),
=(cos53°,cos37°),
•
=( )
| a |
| b |
| a |
| b |
A、
| ||||
B、
| ||||
C、-
| ||||
D、-
|