ÌâÄ¿ÄÚÈÝ
10£®¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬ÈôÂú×㣺¶ÔÈÎÒâx¡ÊD£¬´æÔÚ³£ÊýM£¾0£¬¶¼ÓÐ|f£¨x£©|¡ÜM³ÉÁ¢£¬Ôò³Æf£¨x£©ÊÇDÉϵÄÓн纯Êý£¬ÆäÖÐM³ÆÎªº¯Êýf£¨x£©µÄÉϽ磮£¨1£©Éèf£¨x£©=$\frac{x}{x+1}$£¬ÅжÏf£¨x£©ÔÚ[-$\frac{1}{2}$£¬$\frac{1}{2}$]ÉÏÊÇ·ñÓÐÓн纯Êý£¬ÈôÊÇ£¬ËµÃ÷ÀíÓÉ£¬²¢Ð´³öf£¨x£©ÉÏËùÓÐÉϽçµÄÖµµÄ¼¯ºÏ£¬Èô²»ÊÇ£¬Ò²Çë˵Ã÷ÀíÓÉ£»
£¨2£©Èôº¯Êýg£¨x£©=1+2x+a•4xÔÚx¡Ê[0£¬2]ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©»¯¼òf£¨x£©=$\frac{x}{x+1}$=1-$\frac{1}{1+x}$£¬´Ó¶ø¿ÉµÃ-1¡Üf£¨x£©¡Ü$\frac{1}{3}$£»´Ó¶øÈ·¶¨|f£¨x£©|¡Ü1£»´Ó¶ø½âµÃ£»
£¨2£©ÓÉÌâÒâÖª|g£¨x£©|¡Ü3ÔÚ[0£¬2]ÉϺã³ÉÁ¢£»´Ó¶ø¿ÉµÃ-$\frac{4}{{4}^{x}}$-$\frac{1}{{2}^{x}}$¡Üa¡Ü$\frac{2}{{4}^{x}}$-$\frac{1}{{2}^{x}}$£»´Ó¶ø»»ÔªÁît=$\frac{1}{{2}^{x}}$£¬Ôòt¡Ê[$\frac{1}{4}$£¬1]£»´Ó¶ø¿ÉµÃ-4t2-t¡Üa¡Ü2t2-tÔÚ[$\frac{1}{4}$£¬1]ÉϺã³ÉÁ¢£»´Ó¶ø»¯Îª×îÖµÎÊÌ⣮
½â´ð ½â£º£¨1£©f£¨x£©=$\frac{x}{x+1}$=1-$\frac{1}{1+x}$£¬Ôòf£¨x£©ÔÚ[-$\frac{1}{2}$£¬$\frac{1}{2}$]ÉÏÊÇÔöº¯Êý£»
¹Êf£¨-$\frac{1}{2}$£©¡Üf£¨x£©¡Üf£¨$\frac{1}{2}$£©£»¹Ê-1¡Üf£¨x£©¡Ü$\frac{1}{3}$£»
¹Ê|f£¨x£©|¡Ü1£»
¹Êf£¨x£©ÊÇÓн纯Êý£»
¹Êf£¨x£©ÉÏËùÓÐÉϽçµÄÖµµÄ¼¯ºÏΪ[1£¬+¡Þ£©£»
£¨2£©¡ßº¯Êýg£¨x£©=1+2x+a•4xÔÚx¡Ê[0£¬2]ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý£¬
¡à|g£¨x£©|¡Ü3ÔÚ[0£¬2]ÉϺã³ÉÁ¢£»
¼´-3¡Üg£¨x£©¡Ü3£¬
¡à-3¡Ü1+2x+a•4x¡Ü3£¬
¡à-$\frac{4}{{4}^{x}}$-$\frac{1}{{2}^{x}}$¡Üa¡Ü$\frac{2}{{4}^{x}}$-$\frac{1}{{2}^{x}}$£»
Áît=$\frac{1}{{2}^{x}}$£¬Ôòt¡Ê[$\frac{1}{4}$£¬1]£»
¹Ê-4t2-t¡Üa¡Ü2t2-tÔÚ[$\frac{1}{4}$£¬1]ÉϺã³ÉÁ¢£»
¹Ê£¨-4t2-t£©max¡Üa¡Ü£¨2t2-t£©min£¬t¡Ê[$\frac{1}{4}$£¬1]£»
¼´-$\frac{1}{2}$¡Üa¡Ü-$\frac{1}{8}$£»
¹ÊʵÊýaµÄȡֵ·¶Î§Îª[-$\frac{1}{2}$£¬-$\frac{1}{8}$]£®
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄ»¯¼òÔËËãµÄÓ¦Óü°×ª»¯Ë¼ÏëµÄÓ¦Óã¬Í¬Ê±¿¼²éÁ˺ã³ÉÁ¢ÎÊÌâÓë×îÖµÎÊÌâµÄÓ¦Óã®
| A£® | $\frac{3}{4}$ | B£® | -$\frac{3}{4}$ | C£® | $\frac{1}{4}$ | D£® | -$\frac{1}{4}$ |
| A£® | $\frac{\sqrt{5}}{5}$ | B£® | 1 | C£® | $\sqrt{5}$ | D£® | 5 |