题目内容

17.如图,在三棱锥P-ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中点,M是CE的中点,N点在PB上,且4PN=PB.
(Ⅰ)证明:平面PCE⊥平面PAB;
(Ⅱ)证明:MN∥平面PAC.

分析 (I)由AB⊥平面PAC可得AB⊥PC,再结合AP⊥PC得出PC⊥平面PAB,故而平面PCE⊥平面PAB;
(II)取AE中点Q,连结NQ,MQ,则可证明平面MNQ∥平面PAC,故而MN∥平面PAC.

解答 证明:(I)∵AB⊥平面PAC,PC?平面PAC,
∴AB⊥PC,
∵∠APC=90°,∴AP⊥PC,
又∵AP?平面PAB,AB?平面PAB,AP∩AB=A,
∴PC⊥平面PAB,∵PC?平面PCE,
∴平面PCE⊥平面PAB.
(II)取AE中点Q,连结NQ,MQ,
∵M是CE中点,∴MQ∥AC,
∵PB=4PN,AB=4AQ,
∴QN∥AP,
又∵AP∩PC=P,AP?平面APC,PC?平面APC,QN∩QM=Q,QN?平面MNQ,QM?平面MNQ,
∴平面MNQ∥平面PAC,
∵MN?平面MNQ,
∴MN∥平面PAC.

点评 本题考查了面面垂直的判定,线面平行的判定,构造平行平面是常用解题方法之一.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网