题目内容

已知函数f(x)=
4x
4x+2

(Ⅰ)求f(x)+f(1-x),x∈R的值;
(Ⅱ)若数列{an}满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)(n∈N*),求数列{an}的通项公式;
(Ⅲ)若数列{bn}满足bn=2n+1•an,求数列{bn}的前n项和Sn
考点:数列的求和,函数的值
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得f(x)+f(1-x)=
4x
4x+2
+
41-x
41-x+2
=
4x
4x+2
+
4
4+2•4x
=
4x
4x+2
+
2
4x+2
=1.
(Ⅱ)由(Ⅰ)推导出an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)=
n+1
2

(Ⅲ)由bn=2n+1•an=(n+1)•2n,利用错位相减法能求出数列{bn}的前n项和Sn
解答: 解:(Ⅰ)∵f(x)=
4x
4x+2

∴f(x)+f(1-x)=
4x
4x+2
+
41-x
41-x+2

=
4x
4x+2
+
4
4x
4
4x
+2

=
4x
4x+2
+
4
4+2•4x

=
4x
4x+2
+
2
4x+2
=1.
(Ⅱ)∵f(x)+f(1-x)=1,f(
1
2
)=
4
1
2
4
1
2
+2
=
1
2

∴an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
=[f(0)+f(1)]+[f(
1
n
)+f(
n-1
n
)]+…
=
n+1
2

an=
n+1
2

(Ⅲ)∵bn=2n+1•an=(n+1)•2n
∴Sn=2•2+3•22+4•23+…+(n+1)•2n,①
2Sn=2•22+3•23+4•24+…+(n+1)•2n+1,②
①-②,得:-Sn=4+22+23+24+…+2n-(n+1)•2n+1
=4+
4(1-2n-1)
1-2
-(n+1)•2n+1
=-n•2n+1
∴Sn=n•2n+1
点评:本题考查函数值的求法,考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网