题目内容
已知函数f(x)=
.
(Ⅰ)求f(x)+f(1-x),x∈R的值;
(Ⅱ)若数列{an}满足an=f(0)+f(
)+f(
)+…+f(
)+f(1)(n∈N*),求数列{an}的通项公式;
(Ⅲ)若数列{bn}满足bn=2n+1•an,求数列{bn}的前n项和Sn.
| 4x |
| 4x+2 |
(Ⅰ)求f(x)+f(1-x),x∈R的值;
(Ⅱ)若数列{an}满足an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
(Ⅲ)若数列{bn}满足bn=2n+1•an,求数列{bn}的前n项和Sn.
考点:数列的求和,函数的值
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得f(x)+f(1-x)=
+
=
+
=
+
=1.
(Ⅱ)由(Ⅰ)推导出an=f(0)+f(
)+f(
)+…+f(
)+f(1)=
.
(Ⅲ)由bn=2n+1•an=(n+1)•2n,利用错位相减法能求出数列{bn}的前n项和Sn.
| 4x |
| 4x+2 |
| 41-x |
| 41-x+2 |
| 4x |
| 4x+2 |
| 4 |
| 4+2•4x |
| 4x |
| 4x+2 |
| 2 |
| 4x+2 |
(Ⅱ)由(Ⅰ)推导出an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n+1 |
| 2 |
(Ⅲ)由bn=2n+1•an=(n+1)•2n,利用错位相减法能求出数列{bn}的前n项和Sn.
解答:
解:(Ⅰ)∵f(x)=
,
∴f(x)+f(1-x)=
+
=
+
=
+
=
+
=1.
(Ⅱ)∵f(x)+f(1-x)=1,f(
)=
=
,
∴an=f(0)+f(
)+f(
)+…+f(
)+f(1)
=[f(0)+f(1)]+[f(
)+f(
)]+…
=
,
∴an=
.
(Ⅲ)∵bn=2n+1•an=(n+1)•2n,
∴Sn=2•2+3•22+4•23+…+(n+1)•2n,①
2Sn=2•22+3•23+4•24+…+(n+1)•2n+1,②
①-②,得:-Sn=4+22+23+24+…+2n-(n+1)•2n+1
=4+
-(n+1)•2n+1
=-n•2n+1,
∴Sn=n•2n+1.
| 4x |
| 4x+2 |
∴f(x)+f(1-x)=
| 4x |
| 4x+2 |
| 41-x |
| 41-x+2 |
=
| 4x |
| 4x+2 |
| ||
|
=
| 4x |
| 4x+2 |
| 4 |
| 4+2•4x |
=
| 4x |
| 4x+2 |
| 2 |
| 4x+2 |
(Ⅱ)∵f(x)+f(1-x)=1,f(
| 1 |
| 2 |
4
| ||
4
|
| 1 |
| 2 |
∴an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
=[f(0)+f(1)]+[f(
| 1 |
| n |
| n-1 |
| n |
=
| n+1 |
| 2 |
∴an=
| n+1 |
| 2 |
(Ⅲ)∵bn=2n+1•an=(n+1)•2n,
∴Sn=2•2+3•22+4•23+…+(n+1)•2n,①
2Sn=2•22+3•23+4•24+…+(n+1)•2n+1,②
①-②,得:-Sn=4+22+23+24+…+2n-(n+1)•2n+1
=4+
| 4(1-2n-1) |
| 1-2 |
=-n•2n+1,
∴Sn=n•2n+1.
点评:本题考查函数值的求法,考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
等差数列{an}的通项公式an=2n-1,设数列{
},其前n项和为Sn,则Sn等于( )
| 1 |
| an•an+1 |
A、
| ||
B、
| ||
C、
| ||
| D、以上都不对 |
已知
=(-3,2),
=(-1,λ),向量
与
垂直,则实数λ的值为( )
| a |
| b |
| a |
| b |
A、-
| ||
B、
| ||
C、-
| ||
D、
|