ÌâÄ¿ÄÚÈÝ
17£®ÒÑÖª{ an }ÊÇÒ»¸ö¹«²î´óÓÚ0µÄµÈ²îÊýÁУ¬ÇÒÂú×ãa3a6=55£¬a2+a7=16£®£¨1£©ÇóÊýÁÐ{ an }µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ã$\frac{{b}_{1}}{2}+\frac{{b}_{2}}{{2}^{2}}+\frac{{b}_{3}}{{2}^{3}}$+¡+$\frac{{b}_{n}}{{2}^{n}}$=an £¨n¡ÊN* £© ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®
·ÖÎö £¨1£©ÓÉÒÑÖªÁÐʽÇóµÃµÈ²îÊýÁеĹ«²î£¬´úÈëµÈ²îÊýÁеÄͨÏʽÇóµÃÊýÁÐ{ an }µÄͨÏʽ£»
£¨2£©ÓÉ$\frac{{b}_{1}}{2}+\frac{{b}_{2}}{{2}^{2}}+\frac{{b}_{3}}{{2}^{3}}$+¡+$\frac{{b}_{n}}{{2}^{n}}$=an ÇóµÃb1¼°bn£¬¿ÉµÃÊýÁÐ{bn}ÊÇÒÔ2ΪÊ×ÏÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬ÔòÊýÁÐ{bn}µÄǰnÏîºÍSn¿ÉÇó£®
½â´ð ½â£º£¨1£©¡ßÊýÁÐ{ an }ÊǵȲîÊýÁУ¬ÇÒa2+a7=16£¬
¡àa3+a6=16£¬ÓÖ¡ßa3a6=55£¬ÇÒÊýÁÐ{ an }µÄ¹«²î´óÓÚ0£¬
¡àa3=5£¬a6=11£¬ÔòÆä¹«²îd=$\frac{{a}_{6}-{a}_{3}}{6-3}=\frac{11-5}{3}$=2£¬
¡àan=a3+£¨n-3£©•2=5+2n-6=2n-1£»
£¨2£©ÓÉÌâÒâµÃb1=2a1=2£®
µ±n¡Ý2ʱ£¬an-an-1=£¨$\frac{{b}_{1}}{2}+\frac{{b}_{2}}{{2}^{2}}+\frac{{b}_{3}}{{2}^{3}}$+¡+$\frac{{b}_{n}}{{2}^{n}}$£©-£¨$\frac{{b}_{1}}{2}+\frac{{b}_{2}}{{2}^{2}}+\frac{{b}_{3}}{{2}^{3}}$+¡+$\frac{{b}_{n-1}}{{2}^{n-1}}$£©
=$\frac{{b}_{n}}{{2}^{n}}=£¨2n-1£©-[2£¨n-1£©-1]=2$£¬
¡à${b}_{n}={2}^{n+1}$£¬Ôò$\frac{{b}_{n+1}}{{b}_{n}}=\frac{{2}^{n+1}}{{2}^{n+1}}=2$£®
¡àÊýÁÐ{bn}ÊÇÒÔ2ΪÊ×ÏÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬ÆäǰnÏîºÍSn=$\frac{2£¨1-{2}^{n}£©}{1-2}={2}^{n+1}-2$£®
µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éÁ˵ȲîÊýÁеÄÐÔÖʺ͵ȱȹØÏµµÄÈ·¶¨£¬ÑµÁ·Á˵ȱÈÊýÁÐǰnÏîºÍµÄÇ󷨣¬ÊÇÖеµÌ⣮
| A£® | Ïß¶ÎNOΪ¶¨³¤ | B£® | $|CO|¡Ê[1£¬\sqrt{2}£©$ | C£® | ¡ÏAMO+¡ÏADB£¾180¡ã | D£® | µãOµÄ¹ì¼£ÊÇÔ²»¡ |
| A£® | 28 | B£® | 29 | C£® | 30 | D£® | 31 |
| A£® | 30¡ã | B£® | 45¡ã | C£® | 60¡ã | D£® | 90¡ã |