题目内容

已知cos(75°+α)=,其中α为第三象限角,求cos(105°-α)+sin(α-105°)的值.

解:分别求cos(105°-α)和sin(α-105°)的值.

cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=.

sin(α-105°)=-sin(105°-α)=

-sin[180°-(75°+α)]=-sin(75°+α).

∵cos(75°+α)=>0且α为第三象限角,

∴75°+α为第四象限角.

∴sin(75°+α)=.

∴sin(α-105°)=.

∴cos(105°-α)+sin(α-105°)=.

温馨提示

    观察一下每一组诱导公式的等号两边的角度,不难发现,这两个角度的和或差总是一个轴线角,即为kπ,k∈Z的形式.于是我们可以归纳出诱导公式的一个十分重要的功能是如果两个角的和或差是轴线角kπ,k∈Z的话,利用诱导公式总可以把它们变成同角函数来处理,能认识到这一点,对于我们灵活利用诱导公式进行变形是十分重要的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网