题目内容
9.若F是抛物线y2=4x的焦点,点Pi(i=1,2,3,…,10)在抛物线上,且$\overrightarrow{{P_1}F}+\overrightarrow{{P_2}F}+…+\overrightarrow{{P_{100}}F}=\overrightarrow 0$,则$|\overrightarrow{{P_1}F|}+\overrightarrow{|{P_2}F}|+…+\overrightarrow{|{P_{100}}F}|$=200.分析 根据抛物线的定义得抛物线上的点到焦点的距离等于该点到准线的距离,因此求出抛物线的准线方程,结合题中数据加以计算,即可得到本题答案.
解答 解:∵抛物线y2=4x的焦点为F(1,0),准线为x=-1,
∴根据抛物线的定义,Pi(i=1,2,3,…,2015)到焦点的距离等于Pi到准线的距离,即|PiF|=xi+1,
$\overrightarrow{{P_1}F}+\overrightarrow{{P_2}F}+…+\overrightarrow{{P_{100}}F}=\overrightarrow 0$,可得1-x1+1-x2+…+1-x100=0,
∴x1+x2+…+x100=100
∴|P1F|+|P2F|+…|P100F|=(x1+1)+(x2+1)+…+(x100+1)=(x1+x2+…+x100)+100=100+100=200.
故答案为:200.
点评 本题考查了抛物线的定义、标准方程和简单几何性质,考查向量等知识,属于中档题.
练习册系列答案
相关题目
4.设l是直线,α,β是两个不同的平面( )
| A. | 若l∥α,l∥β,则α∥β | B. | 若α⊥β,l⊥α,则l⊥β | C. | 若l∥α,l⊥β,则α⊥β | D. | 若α⊥β,l∥α,则α⊥β |