题目内容

用反证法证明:圆的两条不是直径的相交弦不能互相平分.
考点:反证法与放缩法
专题:反证法
分析:利用反证法假设圆的两条不是直径的相交弦能互相平分,推出矛盾即可.
解答: 证法一:假设圆的两条不是直径的相交弦能互相平分,
如图AB,CD为圆O的两条不是直径且互相平分的相交弦,交点为E
∵CE=DE,AE=BE,O为圆心
∴OE⊥CD,OE⊥AB
∴CD∥AB
显然与AB,CD矛盾,故假设不成立.
∴圆的两条不是直径的相交弦不能互相平分.
证法二:证明:假设AB,CD能互相平分
连接OE
∵AE=BE
∴OE⊥AB
同理OE⊥CD
因为这与过一点有且有一条直线与已知直线垂直相矛盾,所以假设错误,所以圆的两条不是直径的相交弦不能互相平分.
点评:本题主要考察了反证法,以及圆的相关知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网