题目内容

若在区间[-5,5]内任取一个实数a,则使直线x+y+a=0与圆(x-1)2+(y+2)2=2有公共点的概率为(  )
A、
2
5
B、
2
5
C、
3
5
D、
3
2
10
考点:几何概型
专题:应用题,概率与统计
分析:利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a,最后根据几何概型的概率公式可求出所求.
解答: 解:∵直线x+y+a=0与圆(x-1)2+(y+2)2=2有公共点,
|1-2+a|
2
2
,解得-1≤a≤3,
∴在区间[-5,5]内任取一个实数a,使直线x+y+a=0与圆(x-1)2+(y+2)2=2有公共点的概率为
3+1
5+5
=
2
5

故选:B.
点评:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网