ÌâÄ¿ÄÚÈÝ
3£®¶ÔÓÚº¯Êý$f£¨x£©=\left\{\begin{array}{l}1-\left|x+1\right|£¬x¡Ê[-2£¬0]\\ 2f£¨x-2£©£¬x¡Ê£¨0£¬+¡Þ£©\end{array}\right.$£¬ÓÐÈçÏÂÈý¸öÃüÌ⣺¢Ùf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼äΪ[2n-3£¬2n-2]£¨n¡ÊN*£©
¢Úf£¨x£©µÄÖµÓòΪ[0£¬+¡Þ£©
¢ÛÈô-2£¼a¡Ü0£¬Ôò·½³Ìf£¨x£©=x+aÔÚÇø¼ä[-2£¬0]ÄÚÓÐ3¸ö²»ÏàµÈµÄʵ¸ù
ÆäÖУ¬ÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
·ÖÎö »³öº¯Êý$f£¨x£©=\left\{\begin{array}{l}1-\left|x+1\right|£¬x¡Ê[-2£¬0]\\ 2f£¨x-2£©£¬x¡Ê£¨0£¬+¡Þ£©\end{array}\right.$µÄͼÏó£¬ÊýÐνáºÏ·ÖÎöÈý¸öÃüÌâµÄÕæ¼Ù£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£ºº¯Êý$f£¨x£©=\left\{\begin{array}{l}1-\left|x+1\right|£¬x¡Ê[-2£¬0]\\ 2f£¨x-2£©£¬x¡Ê£¨0£¬+¡Þ£©\end{array}\right.$µÄͼÏóÈçÏÂͼËùʾ£º![]()
ÓÉͼ¿ÉµÃ£º¢Ùf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼äΪ[2n-3£¬2n-2]£¨n¡ÊN*£©£¬¹Ê¢ÙÕýÈ·£»
¢Úf£¨x£©µÄÖµÓòΪ[0£¬+¡Þ£©£¬¹Ê¢ÚÕýÈ·£»
¢ÛÈô-2£¼a¡Ü0£¬Ôò·½³Ìf£¨x£©=x+aÔÚÇø¼ä[-2£¬0]ÄÚÖÁ¶àÓÐÓÐ2¸ö²»ÏàµÈµÄʵ¸ù£¬¹Ê¢Û´íÎó£»
¹ÊÑ¡£ºC
µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÎªÔØÌ壬¿¼²éÁ˺¯ÊýµÄͼÏ󣬺¯ÊýµÄÖµÓò£¬º¯ÊýµÄ¸ùÓë·½³ÌµÄÁãµã£¬ÄѶÈÖеµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®ÒÑÖª³¤·½ÌåABCD-A1B1C1D1µÄÍâ½ÓÇòOµÄÌå»ýΪ$\frac{32¦Ð}{3}$£¬ÆäÖÐBB1=2£¬ÔòÈýÀâ×¶O-ABCµÄÌå»ýµÄ×î´óֵΪ£¨¡¡¡¡£©
| A£® | 1 | B£® | 3 | C£® | 2 | D£® | 4 |
11£®
ÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+ϕ£©£¨A£¾0£¬¦Ø£¾0£©f£¨x£©=Asin£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | º¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚΪ2¦Ð | |
| B£® | º¯Êýf£¨x£©µÄͼÏó¹ØÓÚµã$£¨{-\frac{5¦Ð}{12}£¬0}£©$¶Ô³Æ | |
| C£® | ½«º¯Êýf£¨x£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃµ½µÄº¯ÊýͼÏó¹ØÓÚyÖá¶Ô³Æ | |
| D£® | º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ$[{k¦Ð+\frac{7¦Ð}{12}£¬k¦Ð+\frac{13¦Ð}{12}}]£¬k¡ÊZ$ |
18£®Èô$\frac{cos2¦Á}{{cos£¨¦Á-\frac{¦Ð}{4}£©}}=-\frac{1}{2}£¬Ôòsin¦Á-cos¦Á$µÈÓÚ£¨¡¡¡¡£©
| A£® | $-\frac{{\sqrt{2}}}{4}$ | B£® | $-\frac{{\sqrt{2}}}{2}$ | C£® | $\frac{{\sqrt{2}}}{4}$ | D£® | $\frac{{\sqrt{2}}}{2}$ |
8£®¡°0¡Üa£¼2¡±ÊÇ¡°ax2+2ax+1£¾0µÄ½â¼¯ÊÇʵÊý¼¯R¡±µÄ£¨¡¡¡¡£©
| A£® | ³ä·Ö¶ø·Ç±ØÒªÌõ¼þ | B£® | ±ØÒª¶ø·Ç³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È·Ç³ä·ÖÒ²·Ç±ØÒªÌõ¼þ |
19£®Èô¹ØÓÚxµÄ²»µÈʽex-£¨a+1£©x-b¡Ý0£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©ÔÚRÉϺã³ÉÁ¢£¬Ôò£¨a+1£©bµÄ×î´óֵΪ£¨¡¡¡¡£©
| A£® | e+1 | B£® | e+$\frac{1}{2}$ | C£® | $\frac{e}{2}$ | D£® | $\frac{e}{4}$ |