题目内容

7.如图,△ABC的内切圆I与边AB、AC分别切于点D、E,O为△BCI的外心.证明:∠ODB=∠OEC.

分析 证明A,B,O,C 四点共圆,△OAD≌△OAE,即可证明结论.

解答 证明:由O是△BCI的外心,知∠BOI=2∠BCI=∠BCA.同理,∠COI=∠CBA.
则∠BOC=∠BOI+∠COI=∠BCA+∠CBA=180°-∠BAC.
于是,A,B,O,C 四点共圆.
由OB=OC,知∠BAO=∠CAO.
因为AD=AE,AO=AO,
所以,△OAD≌△OAE.因此,∠ODA=∠OEA.
故∠ODB=∠OEC.

点评 本题考查四点共圆,三角形全等的证明,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网