题目内容

14.设整数a使得关于x的一元二次方程5x2-5ax+26a-143=0的两个根都是整数,则a的值是18.

分析 先因式分解得到(5x-26)(5x-5a+26)=39,即可得到只存在39=1×39或39×1或3×13或13×3或四种情况,分别计算判断即可.

解答 解:∵5x2-5ax+26a-143=0⇒25x2-25ax+(130a-262)-39=0,
即(5x-26)(5x-5a+26)=39,
∵x,a都是整数,故(5x-26)、(5x-5a+26)都分别为整数,
而只存在39=1×39或39×1或3×13或13×3或四种情况,
①当5x-26=1、5x-5a+26=39联立解得a=2.8不符合,
②当5x-26=39、5x-5a+26=1联立解得a=18,
③当5x-26=3、5x-5a+26=13联立解得a=8.4不符合,
④当5x-26=13、5x-5a+26=3联立解得a=12.4不符合,
∴当a=18时,方程为5x2-90x+325=0两根为13、-5.
故答案为:18.

点评 本题考查了方程根的问题,关键是分类讨论,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网