题目内容

(本小题共14分)

     如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=CE=EF=1.

(Ⅰ)求证:AF∥平面BDE

(Ⅱ)求证:CF⊥平面BDE

(Ⅲ)求二面角A-BE-D的大小。

证明:(I)设AC与BD交于点G,因为EF∥AG,且EF=1,AG=AC=1,所以四边形AGEF为平行四边形。所以AF∥EG。因为EGP平面BDE,AF平面BDE,所以AF∥平面BDE。

(II)因为正方形ABCD和四边形ACEF所在的平面互相垂直,且CE⊥AC,所以CE⊥AC,所以CE⊥平面ABCD。如图,以C为原点,建立空间直角坐标系C-xyz。则C(0, 0, 0),A(,0),D(,0, 0),E(0, 0, 1),F(,1)。所以=(,1),=(0,-,1),=(-,0,1)。所以·= 0-1+1=0,·=-1+0+1=0。所以CF⊥BE,CF⊥DE,所以CF⊥平面BDE

(III)由(II)知,=(,1),是平面BDE的一个法向量,设平面ABE的法向量=(x,y,z),则·=0,·=0。

所以x=0,且z=y。令y=1,则z=。所以n=(),从而cos()=

因为二面角A-BE-D为锐角,所以二面角A-BE-D为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网