题目内容
由a1=1,d=3确定的等差数列{an},当an=2014时,序号n等于( )
| A、671 | B、672 |
| C、673 | D、674 |
考点:等差数列的通项公式
专题:等差数列与等比数列
分析:首先由a1和d求出an,然后令an=2014,解方程即可.
解答:
解:∵{an}是首项a1=1,公差d=3的等差数列,
∴an=1+(n-1)×3=3n-2,
∵an=2014,∴3n-2=2014,
解得n=672.
故选:B.
∴an=1+(n-1)×3=3n-2,
∵an=2014,∴3n-2=2014,
解得n=672.
故选:B.
点评:本题主要考查了等差数列的通项公式an=a1+(n-1)d,注意方程思想的应用.
练习册系列答案
相关题目
如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要非充分条件,则丁是甲的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分又不必要条件 |
已知随机变量ξ服从正态分布N(1,σ2),若P(ξ≤4)=0.79,则P(ξ≤-2)( )
| A、0.29 | B、0.21 |
| C、0.19 | D、0.79 |
通过随机询问11名性别不同的大学生是否爱好某项运动,得到如下的列联表:
参照附表,得到的正确结论是( )
| 男 | 女 | 总计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| A、有99%以上的把握认为“爱好该项运动与性别有关” |
| B、有99%以上的把握认为“爱好该项运动与性别无关” |
| C、在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” |
| D、在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” |
复数
•i2013(i是虚数单位)为纯虚数,则实数a的值为( )
| 2a+i |
| 1-2i |
| A、1 | ||
| B、-1 | ||
C、
| ||
D、-
|
下列各组中的函数f(x),g(x)表示同一个函数的是( )
A、f(x)=
| |||||
| B、f(x)=x2-2x+3,g(t)=t2-2t+3 | |||||
C、f(x)=|x|与f(x)=
| |||||
D、f(x)=x 与g(x)=
|
函数y=lg(x+1)的图象大致是( )
| A、 |
| B、 |
| C、 |
| D、 |
以下四个命题中既是特称命题又是真命题的为( )
| A、锐角三角形的内角是锐角或钝角 | ||
B、存在一个负数x,使
| ||
| C、两个无理数的和必是无理数 | ||
| D、至少有一个实数x,使x2≤0 |
sin(2014π)=( )
| A、-1 | ||||
| B、1 | ||||
C、
| ||||
| D、0 |