题目内容
【题目】已知四棱锥
中,
平面
,底面
为菱形,
,E是
中点,M是
的中点,F是
上的动点.
![]()
(1)求证:平面
平面
;
(2)直线
与平面
所成角的正切值为
,当F是
中点时,求二面角
的余弦值.
【答案】(1)证明见解析;(2)
.
【解析】
(1)连接
,推导出
,
,
,由此能证明平面
平面
.
(2)以
,
,
所在直线分别为
轴,
轴,
轴建立空间直角坐标系,利用向量法能求出二面角
的余弦值.
(1)连接
,
底面
为菱形,
,
是正三角形;
是
中点,
,
又
,
,
平面
,
平面
,
,
又
,
平面
,
又
平面
,
平面
平面
.
(2)由(1)得,
,
,
两两垂直,
以
,
,
所在直线分别为
轴,
轴,
轴建立如图所示的空间直角坐标系,
平面
,
就是
与平面
所成的角,
在
中,
,即
,
设
,则
,得
,
又
,设
,则
,
,从而
,![]()
则
,
,![]()
,
,
,
设
是平面
的一个法向量,
则
,取
,得
,
又
平面
,![]()
是平面
的一个法向量,
设二面角
的平面角为
.
则
.
二面角
的余弦值为
.
![]()
练习册系列答案
相关题目
【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:
,
,
,
,
,
,得到如图所示的频率分布直方图.
![]()
(1)求
的值;
(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |