题目内容

11.已知函敬f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≥0}\\{3-2x,x<0}\end{array}\right.$,求值:
(2)f(-$\frac{1}{2}$);
(3)f(2-0.5);
(4)f(t-1).

分析 利用分段函数的解析式求解函数值与函数的解析式即可.

解答 解:函敬f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≥0}\\{3-2x,x<0}\end{array}\right.$,
(1)f(-$\frac{1}{2}$)=3+1=4;
(2)f(2-0.5)=(2-0.52-1=$\frac{1}{2}-1$=$-\frac{1}{2}$;
(3)f(t-1)=$\left\{\begin{array}{l}{{t}^{2}-2t,t≥1}\\{5-2t,t<1}\end{array}\right.$.

点评 本题考查分段函数的应用,函数值的求法以及函数的解析式的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网