题目内容
8.直线y=kx+1(k∈R)与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有两个公共点,则m的取值范围为(1,5)∪(5,+∞).分析 分类讨论,根据椭圆焦点位置,由直线y=kx+1恒过点(0,1),要使直线与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有两个公共点,则只需(0,1)必在椭圆内部,即可求得m的取值范围.
解答 解:当椭圆的焦点在x轴上时,则0<m<5时,
直线y=kx+1恒过点(0,1),要使直线与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有两个公共点,
则(0,1)必在椭圆内部,即$\sqrt{m}$>1,则m>1,
当椭圆的焦点在y轴上,则m>5,
直线y=kx+1恒过点(0,1),要使直线与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有两个公共点,
则(0,1)必在椭圆内部,显然成立,
则m>5,
综上可知:m的取值范围:(1,5)∪(5,+∞),
故答案为:(1,5)∪(5,+∞).
点评 本题考查椭圆的性质,直线与椭圆的位置关系,考查分类讨论思想,属于基础题.
练习册系列答案
相关题目
1.甲、乙、丙三位同学上课后独立完成一份自我检测题,甲优秀的概率为$\frac{4}{5}$,乙优秀的概率为$\frac{2}{5}$,丙优秀的概率为$\frac{2}{3}$,则三人中至少有两人优秀的概率为( )
| A. | $\frac{1}{25}$ | B. | $\frac{16}{25}$ | C. | $\frac{24}{25}$ | D. | $\frac{52}{75}$ |
13.设M、N分别是直线11:kx+y-k-4=0与直线l2:x-ky+2=0所过的两个定点,Q为线段MN的中点,P为直线11与直线l2的交点,则|PQ|=( )
| A. | $\frac{5}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | 1 |
20.近年来我国电子商务行业发展迅速,相关管理部门推出了针对电商的商品质量和服务评价的评价体系,现从评价系统中选出某商家的200次成功交易,发现对商品质量的好评率为0.6,对服务评价的好评率为0.75,其中对商品质量和服务评价都做出好评的交易80次.请问是否可以在犯错误概率不超过0.1%的前提下,认为商品质量与服务好评有关?
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
17.第十二届全国人民代表大会第五次会议和政协第十二届全国委员会第五次会议(简称两会)分别于2017年3月5日和3月3日在北京开幕,某高校学生会为了解该校学生对全国两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类,已知这200名学生中男生比女生多20人,对两会“比较关注”的学生中男生人数比女生人数之比为$\frac{4}{3}$,对两会“不太关注”的学生中男生比女生少5人.
(Ⅰ)根据题意建立的2×2列联表,并判断是否有99%的把握认为男生与女生对两会的关注有差异?
(Ⅱ)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人参与两会宣传活动,求这2人全是男生的概率.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
(Ⅰ)根据题意建立的2×2列联表,并判断是否有99%的把握认为男生与女生对两会的关注有差异?
(Ⅱ)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人参与两会宣传活动,求这2人全是男生的概率.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
| P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 6.635 | 10.828 |
18.函数$y=\frac{2}{x}+ln\frac{1}{x-1}$的零点所在的大致区间是( )
| A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |