题目内容

15.已知圆O:x2+y2=2,直线l:y=kx-2.
(1)若直线l与圆O交于不同的两点A、B,当∠AOB为锐角时,求k的取值范围.
(2)若$k=\frac{1}{2}$,P是直线l上的动点,过P作圆O的两条切线PC、PD,切点为C、D,探究:直线CD是否过定点.

分析 (1)利用点到直线的距离公式,结合点O到l的距离$\sqrt{2}>\frac{2}{\sqrt{{k}^{2}+1}}≥\frac{\sqrt{2}}{2}•\sqrt{2}$,可求k的值;
(2)由题意可知:O、P、C、D四点共圆且在以OP为直径的圆上,C、D在圆O:x2+y2=2上可得直线C,D的方程,即可求得直线CD是否过定点

解答 解:(1)由题意,$\sqrt{2}>\frac{2}{\sqrt{{k}^{2}+1}}≥\frac{\sqrt{2}}{2}•\sqrt{2}$,
∴$-\sqrt{3}<k<-1$或1$<k<\sqrt{3}$;
(2)由题意可知:O、P、C、D四点共圆且在以OP为直径的圆上,
设P(t,$\frac{1}{2}t-2$),其方程为:$x(x-t)+y(y-\frac{1}{2}t+2)=0$,
又C、D在圆O:x2+y2=2上
∴lCD:$tx+(\frac{1}{2}t-2)y-2=0$,
即$(x+\frac{y}{2})t-2y-2=0$
由$\left\{\begin{array}{l}{x+\frac{y}{2}=0}\\{2y+2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=-1}\end{array}\right.$,
∴直线CD过定点($\frac{1}{2}$,-1).

点评 本题考查直线与圆的位置关系,考查直线恒过定点,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网