题目内容

已知函数为实数,),

(1)若,且函数的值域为,求的表达式;

(2)在(1)的条件下,当时,是单调函数,求实数的取值范围;

(3)设,且函数为偶函数,判断是否大于

 

【答案】

解:(Ⅰ)因为,所以

因为的值域为,所以  ……… 2分

所以.解得.所以

所以            ………… 4分

(Ⅱ)因为

 =,    ……… 6分

所以当 单调.

的范围是时,是单调函数. … 8分

(Ⅲ)因为为偶函数,所以

所以      …………… 10分

因为, 依条件设,则

,所以

所以.        ……………… 12分

此时

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网