题目内容
设不等式2(log| 1 |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| x |
| 8 |
分析:由2(log
x)2+9(log
x)+9≤0可知-3≤log
x≤-
,从而推导出
≤log2x≤3,再由f(x)=(log2x-1)(log2x-3(log2x-2)2-1能够推导出函数f(x)=(log2
)(log2
)的最大值和最小值.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| x |
| 2 |
| x |
| 8 |
解答:解:∵2(log
x)2+9(log
x)+9≤0,
∴(2log
x+3)(log
x+3)≤0.
∴-3≤log
x≤-
.
即log
(
)-3≤log
x≤log
(
)-
∴(
)-
≤x≤(
)-3,即2
≤x≤8.
从而M=[2
,8].
又f(x)=(log2x-1)(log2x-3)=(log2x)2-4log2x+3=(log2x-2)2-1.
∵2
≤x≤8,
∴
≤log2x≤3.
∴当log2x=2,即x=4时ymin=-1;
当log2x=3,即x=8时,ymax=0.
| 1 |
| 2 |
| 1 |
| 2 |
∴(2log
| 1 |
| 2 |
| 1 |
| 2 |
∴-3≤log
| 1 |
| 2 |
| 3 |
| 2 |
即log
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
∴(
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
从而M=[2
| 2 |
又f(x)=(log2x-1)(log2x-3)=(log2x)2-4log2x+3=(log2x-2)2-1.
∵2
| 2 |
∴
| 3 |
| 2 |
∴当log2x=2,即x=4时ymin=-1;
当log2x=3,即x=8时,ymax=0.
点评:先解不等式求出解集为M,再利用对数函数的性质和二次函数的最值求函数f(x)=(log2
)•(log2
)的最大值和最小值.
| x |
| 2 |
| x |
| 8 |
练习册系列答案
相关题目