题目内容

设不等式2(logx)2+9(logx)+9≤0的解集为M,求当xM时函数f(x)=(log2)(log2)的最大、最小值. 

∴当log2x=2,即x=4时ymin=-1;当log2x=3,即x=8时,ymax=0.


解析:

∵2(x)2+9(x)+9≤0

∴(2x+3)( x+3)≤0.       ∴-3≤x≤-

 ()3x()

∴()x≤()3,∴2x≤8

M={x|x∈[2,8]}

f(x)=(log2x-1)(log2x-3)=log22x-4log2x+3=(log2x-2)2-1. 

∵2x≤8,∴≤log2x≤3

∴当log2x=2,即x=4时ymin=-1;当log2x=3,即x=8时,ymax=0. 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网