题目内容
例2:(1)设不等式2(log| 1 |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| x |
| 8 |
(2)设f(x)=|lgx|,a、b是满足f(a)=f(b)=2f(
| a+b |
| 2 |
①求证:a<1<b;②求证:2<4b-b2<3.
分析:(1)、由不等式2(log
x)2+9log
x+9≤0,可知-3≤log
x≤-
,从而导出
≤log2x≤3.再由f(x)=log2(
)•(log2
)=(log2x-1)•(log2x-3)=(log2x)2-4log2x+3=(log2x-2)2-1可以导出f(x)最大值和最小值.
(2):①由f(x)=|lgx|,f(a)=f(b)可知|lga|=|lgb|.再由0<a<b,y=lgx是增函数,可知-lga=lgb,由此可证a<1<b.
②由f(a)=f(b)=2f(
)可知
=b=
,由此可证2<4b-b2<3.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| x |
| 2 |
| x |
| 8 |
(2):①由f(x)=|lgx|,f(a)=f(b)可知|lga|=|lgb|.再由0<a<b,y=lgx是增函数,可知-lga=lgb,由此可证a<1<b.
②由f(a)=f(b)=2f(
| a+b |
| 2 |
| 1 |
| a |
| (a+b)2 |
| 4 |
解答:解:(1)、∵不等式2(log
x)2+9log
x+9≤0,∴-3≤log
x≤-
,∴2
≤ x≤8.∴
≤log2x≤3.
∴f(x)=log2(
)•(log2
)=(log2x-1)•(log2x-3)=(log2x)2-4log2x+3=(log2x-2)2-1.
故当log2x=2时,f(x)=log2(
)•(log2
)的最小值是-1;当log2x=0时,f(x)=log2(
)•(log2
)的最大值是3.
(2)、①证明:∵f(x)=|lgx|,f(a)=f(b),∴|lga|=|lgb|.
∵0<a<b,y=lgx是增函数,∴-lga=lgb,故a<1<b.
②证明:∵-lga=lgb,∴lg
=lgb,∴ab=1,
∵0<a<b,∴
>
=1.
∵f(a)=f(b)=2f(
),∴lg
=lgb=lg(
)2,∴
=b=
.
∴4b=(
+b)2=
+b2+2,∴4b-b2=
+2,∵b>1,∴2<4b-b2<3.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 2 |
∴f(x)=log2(
| x |
| 2 |
| x |
| 8 |
故当log2x=2时,f(x)=log2(
| x |
| 2 |
| x |
| 8 |
| x |
| 2 |
| x |
| 8 |
(2)、①证明:∵f(x)=|lgx|,f(a)=f(b),∴|lga|=|lgb|.
∵0<a<b,y=lgx是增函数,∴-lga=lgb,故a<1<b.
②证明:∵-lga=lgb,∴lg
| 1 |
| a |
∵0<a<b,∴
| a+b |
| 2 |
| ab |
∵f(a)=f(b)=2f(
| a+b |
| 2 |
| 1 |
| a |
| a+b |
| 2 |
| 1 |
| a |
| (a+b)2 |
| 4 |
∴4b=(
| 1 |
| b |
| 1 |
| b2 |
| 1 |
| b2 |
点评:注意对数的性质运用及对数方程的解法.
练习册系列答案
相关题目