题目内容

6.设命题“如果a,b,c均是奇数,那么方程ax2+bx+c=0(a≠0)没有等根”.试判断它的四种命题的真假.

分析 分别利用定义逆命题;否命题;逆否命题即可得出.进而判断出真假.

解答 解:设a=2m-1,b=2n-1,c=2p-1(m,n,p∈Z),
则b2-4ac=(2n-1)2-4(2m-1)(2p-1)
=4[n2-n-(2m-1)(2p-1)]+1为奇数.
∴b2-4ac≠0.
∴方程ax2+bx+c=0(a≠0)没有等根.
即原命题是真命题.
它的逆否命题“若方程ax2+bx+c=0(a≠0)有等根,则a,b,c不全为奇数”也是真命题.
它的逆命题为“若方程ax2+bx+c=0(a≠0)没有等根,则a,b,c均为奇数”
当a=1,b=0,c=-1时,方程x2-1=0没有等根,其中b=0不是奇数.
所以它的逆命题是假命题.
它的否命题“如果a,b,c不全为奇数,那么方程ax2+bx+c=0(a≠0)有等根”也是假命题.

点评 本题考查了逆命题、否命题、逆否命题的定义、一元二次方程有实数根与判别式的关系,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网