题目内容

7.在△ABC中,C=$\frac{2π}{3}$,AB=3,则△ABC的周长为(  )
A.$6sin({A+\frac{π}{3}})+3$B.$6sin({A+\frac{π}{6}})+3$C.$2\sqrt{3}sin({A+\frac{π}{3}})+3$D.$2\sqrt{3}sin({A+\frac{π}{6}})+3$

分析 设△ABC的外接圆半径为R,由已知及正弦定理可求BC=2RsinA=2$\sqrt{3}$sinA,AC=2RsinB=2$\sqrt{3}$sin($\frac{π}{3}$-A),进而利用三角函数恒等变换的应用化简可得周长=2$\sqrt{3}$sin(A+$\frac{π}{3}$)+3,即可得解.

解答 解:设△ABC的外接圆半径为R,则2R=$\frac{3}{sin\frac{2π}{3}}$=2$\sqrt{3}$,
所以:BC=2RsinA=2$\sqrt{3}$sinA,AC=2RsinB=2$\sqrt{3}$sin($\frac{π}{3}$-A),
所以:△ABC的周长=2$\sqrt{3}$(sinA+sin($\frac{π}{3}$-A))+3=2$\sqrt{3}$sin(A+$\frac{π}{3}$)+3.
故选:C.

点评 本题主要考查了正弦定理,三角函数恒等变换的应用,考查了转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网