题目内容
若正数x,y满足x+3y=5xy,则3x+4y的最小值是
- A.

- B.

- C.5
- D.6
C
分析:将x+3y=5xy转化成
=1,然后根据3x+4y=(
)(3x+4y),展开后利用基本不等式可求出3x+4y的最小值.
解答:∵正数x,y满足x+3y=5xy,
∴
=1
∴3x+4y=(
)(3x+4y)=
+
+
+
≥
+2
=5
当且仅当
=
时取等号
∴3x+4y≥5
即3x+4y的最小值是5
故选C
点评:本题主要考查了基本不等式在求解函数的值域中的应用,解答本题的关键是由已知变形,然后进行“1”的代换,属于基础题.
分析:将x+3y=5xy转化成
解答:∵正数x,y满足x+3y=5xy,
∴
∴3x+4y=(
当且仅当
∴3x+4y≥5
即3x+4y的最小值是5
故选C
点评:本题主要考查了基本不等式在求解函数的值域中的应用,解答本题的关键是由已知变形,然后进行“1”的代换,属于基础题.
练习册系列答案
相关题目