题目内容

已知函数f(x)=
2
cos(x-
π
12
),x∈R,若cosθ=
3
5
,θ∈(
2
,2π),则f(θ-
12
)=
 
考点:两角和与差的余弦函数
专题:三角函数的求值
分析:首先利用三角函数的基本关系式求出sinθ,然后将f(θ-
12
)化简求值.
解答: 解:∵cosθ=
3
5
,θ∈(
2
,2π),
∴sinθ=-
4
5

f(θ-
12
)=
2
cos(θ-
12
-
π
12
)=
2
cos(θ-
π
2
)=
2
sinθ=-
4
2
5

故答案为:-
4
2
5
点评:本题考查了利用三角函数的基本关系式以及诱导公式求三角函数值,熟记公式是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网