题目内容

精英家教网某地一天从6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b,则这段曲线得函数解析式为(  )
A、y=10sin(
π
8
x+
3
4
π)
+20,x∈[6,14]
B、y=10sin(
π
4
x+
3
4
)
+20,x∈[6,14]
C、y=10sin(
π
4
x+
3
4
π)
+10,x∈[6,14]
D、y=10sin(
π
8
x+
3
4
π)
+10,x∈[6,14]
分析:已知函数图象求函数y=Asin(ωx+φ)(A>0,ω>0)的解析式时,常用的解题方法是待定系数法,由图中的最大值或最小值确定A,由周期确定ω,由适合解析式的点的坐标来确定φ.将图中数据点代入即可求出相应系数,进而得到函数的解析式.
解答:解:由函数图象可知,
函数的最大值M为30,最小值m为10,
周期为2×(14-6)=16,
且过(6,10)点
则2A=30-10=20,∴A=10
2B=30+10=40,∴B=20
T=16=
ω
,∴ω=
π
8

将(6,10)点代入易得φ=
4

故函数的解析式为:y=10sin(
π
8
x+
3
4
π)+20,x∈[6,14]

故选A
点评:由函数图象求函数y=Asin(ωx+φ)+B(A>0,ω>0)的解析式时,由图中的最大值或最小值确定A、B,由周期确定ω,由适合解析式的点的坐标来确定φ,但由图象求得的y=Asin(ωx+φ)(A>0,ω>0)的解析式一般不唯一,只有限定φ的取值范围,才能得出唯一解,否则φ的值不确定,解析式也就不唯一.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网