题目内容
若数列{an}满a1=1,
=
,a8=
.
| an+1 |
| an |
| n |
| n+1 |
| 1 |
| 8 |
| 1 |
| 8 |
分析:利用累乘法可得a8=a1×
×
×…×
,代入数值即可得到答案.
| a2 |
| a1 |
| a3 |
| a2 |
| a8 |
| a7 |
解答:解:a8=a1×
×
×…×
=1×
×
×…×
=
,
故答案为:
.
| a2 |
| a1 |
| a3 |
| a2 |
| a8 |
| a7 |
| 1 |
| 2 |
| 2 |
| 3 |
| 7 |
| 8 |
| 1 |
| 8 |
故答案为:
| 1 |
| 8 |
点评:本题考查数列的函数特性、由递推式求数列的项,考查累乘法求数列通项.
练习册系列答案
相关题目