题目内容
已知函数f(x)=
|
| 7 |
| 3 |
分析:先要通过a1求出a2,a3,a4,a5,a6,a7,…从中找出数列的规律来.从而求出a2006+a2009+a2010
解答:解;∵a1=
,an+1=f(an),∴a2 =
-1=
,
∴a3=f(a2)=f(
)=
-1=
,
∴a4=f(a3)=f(
)=2×
-1=
,
∴a5=f(
)=
+
=
,a6=2×
-1=
,a7=
,a8=
,…
由此可得,a4=a7=a10=…,a5=a8=a11=…,a6=a9=a12=…
∴a2006=a5,a2009=a5,a2010=a6
∴a2006+a2009+a2010=
+
+
=
,
故答案为:
.
| 7 |
| 3 |
| 7 |
| 3 |
| 5 |
| 3 |
∴a3=f(a2)=f(
| 5 |
| 3 |
| 5 |
| 3 |
| 2 |
| 3 |
∴a4=f(a3)=f(
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
∴a5=f(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 6 |
| 5 |
| 6 |
| 2 |
| 3 |
| 1 |
| 3 |
| 5 |
| 6 |
由此可得,a4=a7=a10=…,a5=a8=a11=…,a6=a9=a12=…
∴a2006=a5,a2009=a5,a2010=a6
∴a2006+a2009+a2010=
| 5 |
| 6 |
| 5 |
| 6 |
| 2 |
| 3 |
| 14 |
| 6 |
故答案为:
| 14 |
| 6 |
点评:此题考查函数周期性.处理时,必须从数列的前几项找出规律来,从而发现数列的周期.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|