题目内容

5.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≤0\\ x≥1\\ x+y-7≤0\end{array}\right.$,则2x+y的取值范围是(  )
A.(-∞,5]∪[$\frac{19}{2}$,+∞)B.[5,8]C.[5,$\frac{19}{2}$]D.[8,$\frac{19}{2}$]

分析 作出不等式组对应的平面区域,设z=2x+y,利用z的几何意义即可得到结论.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点B时,直线y=-2x+z的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-7=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{5}{2}}\\{y=\frac{9}{2}}\end{array}\right.$,即B($\frac{5}{2}$,$\frac{9}{2}$),
代入目标函数z=2x+y得z=2×$\frac{5}{2}$+$\frac{9}{2}$=$\frac{19}{2}$.
即目标函数z=2x+y的最大值为$\frac{19}{2}$.
当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{x=1}\\{x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
代入目标函数z=2x+y得z=2×1+3=5.
即目标函数z=2x+y的最小值为5.
目标函数z=2x+y的取值范围是[5,$\frac{19}{2}$],
故选:C.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网