题目内容
【题目】如图,圆台
的轴截面为等腰梯形
,
,
,
,圆台
的侧面积为
.若点C,D分别为圆
,
上的动点且点C,D在平面
的同侧.
![]()
(1)求证:
;
(2)若
,则当三棱锥
的体积取最大值时,求多面体
的体积.
【答案】(1)证明见解析(2)![]()
【解析】
(1)由圆台侧面积求出上下底半径,计算圆台的高,计算
,由直角三角形性质得
;
(2)三棱锥
的高就是
,表示出三棱锥
的体积,求出最大值时
,
,多面体
分为三棱锥
和四棱锥
,分别计算体积后相加即得.
解:(1)设
,
的半径分别为
,
,
因为圆台的侧面积为
,
所以
,可得
.
因此,在等腰梯形
中,
,
,
.
如图,连接线段
,
,
,
![]()
在圆台
中,
平面
,
平面
,
所以
.
又
,所以在
中,
.
在
中,
,故
,即
.
(2)由题意可知,三棱锥
的体积为
,
又在直角三角形
中,
,
所以当且仅当
,
即点D为弧
的中点时,
有最大值
.
过点C作
交
于点M,
因为
平面
,
平面
,
所以
,
平面
,
平面
,
,
所以
平面
.
又
,则点C到平面
的距离
,
所以四棱锥
的体积
.
综上,当三棱锥
体积最大值时,
多面体![]()
【题目】BMI指数是用体重公斤数除以身高米数的平方得出的数值,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当BMI数值大于或等于20.5时,我们说体重较重,当BMI数值小于20.5时,我们说体重较轻,身高大于或等于170cm时,我们说身高较高,身高小于170cm时,我们说身高较矮.某中小学生成长与发展机构从某市的320名高中男体育特长生中随机选取8名,其身高和体重的数据如表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高(cm) | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
(1)根据最小二乘法的思想与公式求得线性回归方程
.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献值
(保留两位有效数字);
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高(cm) | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 | 0.1 | 0.3 | 0.9 | ﹣1.5 | ﹣0.5 |
(2)通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58(kg).请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.
参考公式:
,
.
.
参考数据:
,
,
,
,
.
【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):
![]()
若分数不低于95分,则称该员工的成绩为“优秀”.
(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;
(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.
组别 | 分组 | 频数 | 频率 |
|
1 |
| |||
2 |
| |||
3 |
| |||
4 |
|
![]()
①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);
②若从所有员工中任选3人,记
表示抽到的员工成绩为“优秀”的人数,求
的分布列和数学期望.