题目内容
已知cos(α+
解:cos(2α+
)=cos2αcos
-sin2αsin
=
(cos2α-sin2α).
∵
≤α+
<
,cos(α+
)>0,由此知
<α+
<
.
∴sin(α+
)=
,从而有
cos2α=sin(2α+
)=2sin(α+
)cos(α+
)
=2×(
)×
=
.
sin2α=-cos(2α+
)=1-2cos2(α+
)=1-2×(
)2=
.
∴cos(2α+
)=
×(
)=
.
练习册系列答案
相关题目
题目内容
已知cos(α+
解:cos(2α+
)=cos2αcos
-sin2αsin
=
(cos2α-sin2α).
∵
≤α+
<
,cos(α+
)>0,由此知
<α+
<
.
∴sin(α+
)=
,从而有
cos2α=sin(2α+
)=2sin(α+
)cos(α+
)
=2×(
)×
=
.
sin2α=-cos(2α+
)=1-2cos2(α+
)=1-2×(
)2=
.
∴cos(2α+
)=
×(
)=
.