题目内容

15.已知定义域为R的函数f(x),对于x∈R,满足f[f(x)-x2+x]=f(x)-x2+x,设有且仅有一个实数x0,使得f(x0)=x0,则实数x0的值为(  )
A..0B..1C.0或1D..无法确定

分析 因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x.又因为有且只有一个实数x0,使得f(x0)=x0,所以对任意x∈R,有f(x)-x2+x=x0,因为f(x0)=x0,所以x0-x02=0,故x0=0或x0=1.再验证,即可得出结论.

解答 解:因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x.
又因为有且只有一个实数x0,使得f(x0)=x0
所以对任意x∈R,有f(x)-x2+x=x0
在上式中令x=x0,有f(x0)-x02+x0=x0
又因为f(x0)=x0,所以x0-x02=0,故x0=0或x0=1
若x0=0,则f(x)-x2+x=0,即f(x)=x2-x
但方程x2-x=x有两个不相同实根,与题设条件矛盾.故x0≠0
若x0=1,则有f(x)-x2+x=1,即f(x)=x2-x+1,此时f(x)=x有且仅有一个实数1,
综上,x0=1.
故选:B.

点评 本题考查函数的解析式的求法,考查函数的单调性,考查运算能力和推理能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网