ÌâÄ¿ÄÚÈÝ
11£®Ä³Í¬Ñ§Óá°Îåµã·¨¡±»º¯Êýf£¨x£©=Asin£¨¦Øx+ϕ£©+B£¬A£¾0£¬¦Ø£¾0£¬|ϕ|£¼$\frac{¦Ð}{2}$ÔÚijһ¸öÖÜÆÚÄÚµÄͼÏóʱ£¬ÁÐ±í²¢ÌîÈëÁ˲¿·ÖÊý¾Ý£¬ÈçÏÂ±í£º| ¦Øx+¦Õ | 0 | $\frac{¦Ð}{2}$ | ¦Ð | $\frac{3¦Ð}{2}$ | 2¦Ð |
| x | x1 | $\frac{1}{3}$ | x2 | $\frac{7}{3}$ | x3 |
| Asin£¨¦Øx+ϕ£©+B | 0 | $\sqrt{3}$ | 0 | -$\sqrt{3}$ | 0 |
£¨¢ò£©½«f£¨x£©µÄͼÏóÑØxÖáÏòÓÒÆ½ÒÆ$\frac{2}{3}$¸öµ¥Î»µÃµ½º¯Êýg£¨x£©£¬µ±x¡Ê[0£¬4]ʱÆäͼÏóµÄ×î¸ßµãºÍ×îµÍµã·Ö±ðΪP£¬Q£¬Çó$\overrightarrow{OQ}$Óë$\overrightarrow{QP}$¼Ð½Ç¦ÈµÄ´óС£®
·ÖÎö £¨1£©$ÓÉ\left\{{\begin{array}{l}{\frac{1}{3}¦Ø+ϕ=\frac{¦Ð}{2}}\\{\frac{7}{3}¦Ø+ϕ=\frac{3¦Ð}{2}}\end{array}}\right.£¬µÃ\left\{{\begin{array}{l}{¦Ø=\frac{¦Ð}{2}}\\{ϕ=\frac{¦Ð}{3}}\end{array}}\right.$£¬ÓÉ$\left\{{\begin{array}{l}{\frac{¦Ð}{2}{x_1}+\frac{¦Ð}{3}=0}\\{\frac{¦Ð}{2}{x_2}+\frac{¦Ð}{3}=¦Ð}\\{\frac{¦Ð}{2}{x_3}+\frac{¦Ð}{3}=2¦Ð}\end{array}}\right.$£¬½âµÃx1¡¢x2¡¢x3µÄÖµ£¬ÔÙÇóµÃA£¬B¼´¿ÉµÃ½âº¯Êýf£¨x£©µÄ½âÎöʽ£®
£¨2£©¸ù¾ÝÈý½Çº¯ÊýͼÏó±ä»»¹æÂɿɵãº$g£¨x£©=\sqrt{3}sin\frac{¦Ð}{2}x$£¬ÇóµÃͼÏóµÄ×î¸ßµãºÍ×îµÍµãP£¬QµÄ×ø±ê£¬¿ÉµÃÏòÁ¿$\overrightarrow{OQ}$Óë$\overrightarrow{QP}$×ø±ê£¬ÓÉÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËËã¼´¿ÉÇóµÃ¼Ð½Ç¦ÈµÄ´óС£®
½â´ð ½â£º£¨1£©$ÓÉ\left\{{\begin{array}{l}{\frac{1}{3}¦Ø+ϕ=\frac{¦Ð}{2}}\\{\frac{7}{3}¦Ø+ϕ=\frac{3¦Ð}{2}}\end{array}}\right.£¬µÃ\left\{{\begin{array}{l}{¦Ø=\frac{¦Ð}{2}}\\{ϕ=\frac{¦Ð}{3}}\end{array}}\right.$£¨2¡ä£©
¡à$\left\{{\begin{array}{l}{\frac{¦Ð}{2}{x_1}+\frac{¦Ð}{3}=0}\\{\frac{¦Ð}{2}{x_2}+\frac{¦Ð}{3}=¦Ð}\\{\frac{¦Ð}{2}{x_3}+\frac{¦Ð}{3}=2¦Ð}\end{array}}\right.$£¬
¡à${x_1}=-\frac{2}{3}$£¬${x_2}=\frac{4}{3}$£¬${x_3}=\frac{10}{3}$£¨5¡ä£©
ÓÖ¡ß$A=\sqrt{3}£¬B=0$£¬$f£¨x£©=\sqrt{3}sin£¨\frac{¦Ð}{2}x+\frac{¦Ð}{3}£©$£»£¨6¡ä£©
£¨2£©½«f£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{2}{3}$¸öµ¥Î»ºóµÃµ½$g£¨x£©=\sqrt{3}sin\frac{¦Ð}{2}x$£¨8¡ä£©
¹Ê×î¸ßµãΪ$P£¨{1£¬\sqrt{3}}£©$£¬×îµÍµãΪ$Q£¨{3£¬-\sqrt{3}}£©$£®
Ôò$\overrightarrow{OQ}=£¨{3£¬-\sqrt{3}}£©$£¬$\overrightarrow{QP}=£¨{-2£¬2\sqrt{3}}£©$£¬Ôò$cos¦È=\frac{{\overrightarrow{OQ}•\overrightarrow{QP}}}{{|{\overrightarrow{OQ}}|•|{\overrightarrow{QP}}|}}=-\frac{{\sqrt{3}}}{2}$£¨10¡ä£©
¹Ê$¦È=\frac{5¦Ð}{6}$£®£¨12¡ä£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÎåµã·¨×÷ÕýÏÒº¯ÊýµÄͼÏó£¬Èý½Çº¯ÊýµÄͼÏó±ä»»¹æÂÉ£¬¿¼²éÁËÆ½ÃæÏòÁ¿¼°ÆäÓ¦Óã¬ÊìÁ·ÕÆÎÕºÍÁé»îÓ¦ÓÃÏà¹Ø¹«Ê½¼°¶¨ÀíÊǽâÌâµÄ¹Ø¼ü£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{1}{{2\sqrt{x}}}$ | B£® | $\frac{1}{{\sqrt{x}}}$ | C£® | $\frac{2}{x}$ | D£® | $\frac{1}{2x}$ |
| A£® | ÒÑÖªF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬µ½Á½µãF1£¬F2µÄ¾àÀëÖ®ºÍ´óÓÚ8µÄµãµÄ¹ì¼£ÊÇÍÖÔ² | |
| B£® | ÒÑÖªF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬µ½Á½µãF1£¬F2µÄ¾àÀëÖ®ºÍµÈÓÚ6µÄµãµÄ¹ì¼£ÊÇÍÖÔ² | |
| C£® | µ½µãF1£¨-4£¬0£©£¬F2£¨4£¬0£©µÄ¾àÀëÖ®ºÍµÈÓڴӵ㣨5£¬3£©µ½F1£¬F2µÄ¾àÀëÖ®ºÍµÄµãµÄ¹ì¼£ÊÇÍÖÔ² | |
| D£® | µ½µãF1£¨-4£¬0£©£¬F2£¨4.0£©¾àÀëÏàµÈµÄµãµÄ¹ì¼£ÊÇÍÖÔ² |