题目内容

19.△ABC的内角A、B、C所对的边分别是,a、b、c,△ABC的面积S=$\frac{\sqrt{3}}{2}$$\overrightarrow{AB}$•$\overrightarrow{AC}$.
(Ⅰ)求A的大小;
(Ⅱ)若b+c=5,a=$\sqrt{7}$,求△ABC的面积的大小.

分析 (Ⅰ)由平面向量数量积的运算,三角形面积公式可求tanA=$\sqrt{3}$,结合范围A∈(0,π),可得A的值,
(Ⅱ)由余弦定理结合已知可求bc=6,进而利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(Ⅰ)∵S=$\frac{\sqrt{3}}{2}$$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{\sqrt{3}}{2}$bccosA,…2分
又∵S=$\frac{1}{2}$bcsinA,可得:tanA=$\sqrt{3}$,…4分
∴由A∈(0,π),可得:A=$\frac{π}{3}$…6分
(Ⅱ)∵由余弦定理a2=b2+c2-2bccosA,可得:7=b2+c2-bc,…8分
∴可得:(b+c)2-3bc=7,…9分
∴由b+c=5,可得:bc=6,…11分
∴△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{3\sqrt{3}}{2}$…12分

点评 本题主要考查了平面向量数量积的运算,三角形面积公式,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网