题目内容

20.方程$\sqrt{1-{x}^{2}}$=k(x-1)+2有两个不等实根,则k的取值范围是(  )
A.($\frac{3}{4}$,+∞)B.($\frac{1}{3}$,1]C.(0,$\frac{3}{4}$)D.($\frac{3}{4}$,1]

分析 由题意可得,函数y=$\sqrt{1-{x}^{2}}$的图象和直线y=k(x-1)+2有2个交点,数形结合求得k的范围.

解答 解:方程$\sqrt{1-{x}^{2}}$=k(x-1)+2有两个不等实根,
即函数y=$\sqrt{1-{x}^{2}}$的图象和直线y=k(x-1)+2有2个交点.
而函数y=$\sqrt{1-{x}^{2}}$的图象是以原点为圆心,半径等于1的上半圆
(位于x轴及x轴上方的部分),
直线y=k(x-1)+2,即kx-y+2-k=0 的斜率为k,且经过点M(1,2),
当直线和半圆相切时,由$\frac{|0+0+2-k|}{\sqrt{1+{k}^{2}}}$=1,求得k=$\frac{3}{4}$.
当直线经过点A(-1,0)时,由0=k(-1-2)+3求得k=1.
数形结合可得k的范围为($\frac{3}{4}$,1],
故选:D.

点评 本题主要考查方程的根的存在性及个数判断,体现了函数和方程的转化及数形结合的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网