题目内容
已知α∈(0,| π |
| 2 |
| π |
| 3 |
| 3 |
| 5 |
分析:先求出cos(α+
)的值,再利用α=α+
-
的关系,通过正弦两角和公式得出答案.
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
解答:解:∵α∈(0,
)
∴
<α+
<
∴cos(α+
)<0
∴cos(α+
)=-
=-
=-
∴sinα=sin(α+
-
)=sin(α+
)cos
-cos(α+
)sin
=
×
+
×
=
故答案为=
| π |
| 2 |
∴
| π |
| 3 |
| π |
| 3 |
| 5π |
| 6 |
∴cos(α+
| π |
| 3 |
∴cos(α+
| π |
| 3 |
1-sin2(α+
|
1-
|
| 4 |
| 5 |
∴sinα=sin(α+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 3 |
| 5 |
| 1 |
| 2 |
| 4 |
| 5 |
| ||
| 2 |
3+4
| ||
| 10 |
故答案为=
3+4
| ||
| 10 |
点评:本题主要考查正弦函数的两角和公式.关键是弄清要求的角和已知角之间的关系.
练习册系列答案
相关题目