题目内容
a2,a5是方程x2-12x+27=0的两根,数列{an}是公差为正的等差数列,数列{bn}的前n项和为Tn,且Tn=1-| 1 | 2 |
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,求数列{cn}的前n项和Sn.
分析:(1)求出数列{an}的通项公式 an=2n-1,当n≥2时,求得
=
(n≥2),可得 bn=
(
)n-1 .
(2)由 cn= (2n-1)
=
,可得 Sn=2(
+
+
+…+
),用错位相减法求数列的前n项和Sn.
| bn |
| bn-1 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
(2)由 cn= (2n-1)
| 2 |
| 3n |
| 4n-2 |
| 3n |
| 1 |
| 3 |
| 3 |
| 32 |
| 5 |
| 33 |
| 2n-1 |
| 3n |
解答:解:(1)由a2+a5=12,a2•a5=27,且d>0,得a2=3,a5=9,∴d=
=2,a1=1,∴an=2n-1,
在Tn=1-
bn,令n=1,得b1=
,当n≥2时,Tn=1-
bn 中,令 n=1得 b1=
,当n≥2时,
Tn=1-
bn,Tn-1=1-
bn-1,两式相减得 bn=
bn-1-
bn,
=
(n≥2),
∴bn=
(
)n-1 =
(n∈N+).
(2)cn= (2n-1)
=
,∴Sn=2(
+
+
+…+
),
∴
Sn=2(
+
+…+
+
),
两式相减可解得 Sn=2-
.
| a5-a2 |
| 3 |
在Tn=1-
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
Tn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| bn |
| bn-1 |
| 1 |
| 3 |
∴bn=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
(2)cn= (2n-1)
| 2 |
| 3n |
| 4n-2 |
| 3n |
| 1 |
| 3 |
| 3 |
| 32 |
| 5 |
| 33 |
| 2n-1 |
| 3n |
∴
| 1 |
| 3 |
| 1 |
| 32 |
| 3 |
| 33 |
| 2n-3 |
| 3n |
| 2n-1 |
| 3n+1 |
两式相减可解得 Sn=2-
| 2n+2 |
| 3n |
点评:本题考查由递推关系求通项公式,用错位相减法求数列的前n项和.用错位相减法求数列的前n项和是解题的难点.
练习册系列答案
相关题目