题目内容
6.若$\overrightarrow a$=(λ,2),$\overrightarrow b$=(3,4),且$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,则λ的取值范围是$λ>-\frac{8}{3}且λ≠\frac{3}{2}$.分析 利用$\overrightarrow a$=(λ,2),$\overrightarrow b$=(3,4),且$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,计算数量积结合cosθ≠1,推出λ的取值范围.
解答 解:$\overrightarrow a$=(λ,2),$\overrightarrow b$=(3,4),且$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,cosθ>0且cosθ≠1,
而cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{8+3λ}{\sqrt{{λ}^{2}+4}•\sqrt{{3}^{2}+{4}^{2}}}$,∴λ>-$\frac{8}{3}$且8+3λ≠5×$\sqrt{{λ}^{2}+4}$,即λ>-$\frac{8}{3}$且λ≠$\frac{3}{2}$.
故答案为:$λ>-\frac{8}{3}且λ≠\frac{3}{2}$.
点评 本题考查数量积表示两个向量的夹角,数量积的运算,考查计算能力,是基础题.
练习册系列答案
相关题目
14.已知复数z1=$\frac{3+i}{1-i}$的实部为a,复数z2=i(2+i)的虚部为b,复数z=b+ai的共轭复数在复平面内的对应点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
18.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为( )
| A. | $\frac{1}{8}$ | B. | $\frac{3}{16}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |