题目内容

如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,CC1=4,M是棱CC1上的一点.
(1)求证:BC⊥AM;
(2)若N是AB的中点,且CN∥平面AB1M,求CM的长.
考点:直线与平面平行的判定,直线与平面垂直的性质
专题:空间位置关系与距离
分析:(1)由线面垂直得BC⊥C1C,又BC⊥AC,从而BC⊥平面ACC1A1,由此能证明BC⊥AM.
(2)取AB1的中点P,连接MP,NP,由三角形中位线定理得NP∥BB1,从而得到PNCM是平行四边形,由此能求出CM的长.
解答: (1)证明:∵ABC-A1B1C1为直三棱柱,
∴C1C⊥平面ABC,∴BC⊥C1C,
又BC⊥AC,∴BC⊥平面ACC1A1
∵AM在平面ACC1A1上,∴BC⊥AM.
(2)解:取AB1的中点P,连接MP,NP,
∵P为AB1中点,N为AB中点,
∴NP为△ABB1的中位线,∴NP∥BB1
又∵C1C,B1B都是直三棱柱的棱,∴C1C∥B1B,∴MC∥B1B,
∴NP∥CM,∴NPCM共面,
又∵CN∥平面AB1M,∴CN
.
MP,∴PNCM是平行四边形,
∴CM=NP=
1
2
BB1=
1
2
CC1=
1
2
×4=2
点评:本小题线线平行、直线与平面的平行、线面所成角、探索性问题等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网