题目内容
从4个不同的独唱节目和2个不同的合唱节目中选出4个节目编排一个节目单,要求最后一个节目必须是合唱,则这个节目单的编排方法共有 ()
(A)14种. (B)48种. (C)72种 (D) 120种.
设双曲线(,)的虚轴长为,焦距为,则双曲线的渐近线方程为( )
A. B. C. D.
(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.
已知两动圆和(),把它们的公共点的轨迹记为曲线,若曲线与轴的正半轴的交点为,且曲线上的相异两点满足:.
求曲线的方程;
若的坐标为,求直线和轴的交点的坐标;
证明直线恒经过一定点,并求此定点的坐标.
二项式的展开式中,项的系数为 .
(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.
某油库的设计容量为30万吨,年初储量为10万吨,从年初起计划每月购进石油万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前个月的需求量(万吨)与的函数关系为,并且前4个月,区域外的需求量为20万吨.
(1)试写出第个月石油调出后,油库内储油量(万吨)与的函数关系式;
(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定的取值范围.
斜率为的直线与焦点在轴上的椭圆交于不同的两点、.若点、在轴上的投影恰好为椭圆的两焦点,则该椭圆的焦距为 .
若,且,则 .
为实数,表示不超过的最大整数,则函数在上为
A.增函数 B.周期函数 C.奇函数 D.偶函数
是定义在上的奇函数,若当时, ,则关于的函
数的所有零点之和为 (用表示)