ÌâÄ¿ÄÚÈÝ
10£®ÒÑÖªÔ²µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦È\\ y=sin¦È\end{array}\right.$£¨¦È¡Ê[0£¬2¦Ð]£¬¦ÈΪ²ÎÊý£©£¬½«Ô²ÉÏËùÓеãµÄºá×ø±êÉ쳤µ½ÔÀ´µÄ$\sqrt{3}$±¶£¬×Ý×ø±ê²»±äµÃµ½ÇúÏßC1£»ÒÔ×ø±êÔµãΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñsin£¨{¦È+\frac{¦Ð}{4}}£©=4\sqrt{2}$£®£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì
£¨¢ò£©ÉèPΪÇúÏßC1Éϵ͝µã£¬Çóµã PÓëÇúÏßC2ÉϵãµÄ¾àÀëµÄ×îСֵ£¬²¢Çó´ËʱPµãµÄ×ø±ê£®
·ÖÎö £¨¢ñ£©ÓÉÒÑÖª¿ÉµÃÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$£¬ÏûÈ¥²ÎÊý¦È¿ÉµÃ£¬ÓÉÈý½Çº¯Êý¹«Ê½¿É»¯¼«×ø±ê·½³ÌΪ¦Ñcos¦È+¦Ñsin¦È=8£¬¿ÉµÃx+y=8£»
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃ¾àÀëd=$\frac{|\sqrt{3}cos¦È+sin¦È-8|}{\sqrt{2}}$=$\frac{|2sin£¨¦È+\frac{¦Ð}{3}£©-8|}{\sqrt{2}}$£¬ÓÉÈý½Çº¯ÊýµÄ×îÖµ¿ÉµÃ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÒÑÖª¿ÉµÃÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$£¬
ÏûÈ¥²ÎÊý¦È¿ÉµÃ$\frac{{x}^{2}}{3}$+y2=1£¬
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñsin£¨{¦È+\frac{¦Ð}{4}}£©=4\sqrt{2}$£¬
¡à¦Ñcos¦È+¦Ñsin¦È=8£¬¼´x+y=8£»
£¨¢ò£©ÉèP£¨$\sqrt{3}$cos¦È£¬sin¦È£©ÎªÇúÏßC1Éϵ͝µã£¬
ÔòµãPÓëÇúÏßC2£ºx+y=8ÉϵãµÄ¾àÀëd=$\frac{|\sqrt{3}cos¦È+sin¦È-8|}{\sqrt{2}}$=$\frac{|2sin£¨¦È+\frac{¦Ð}{3}£©-8|}{\sqrt{2}}$£¬
µ±sin£¨¦È+$\frac{¦Ð}{3}$£©=1¼´¦È=$\frac{¦Ð}{6}$ʱ£¬dÈ¡×îСֵ3$\sqrt{2}$£¬´ËʱP£¨$\frac{3}{2}$£¬$\frac{1}{2}$£©
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌºÍ¼«×ø±ê·½³Ì£¬Éæ¼°Èý½Çº¯ÊýµÄ×îÖµ£¬Êô»ù´¡Ì⣮
| A£® | i¡Ý49£¿ | B£® | i¡Ý50£¿ | C£® | i¡Ý51£¿ | D£® | i¡Ý100£¿ |
| A£® | 2 | B£® | 6 | C£® | $2\sqrt{3}$ | D£® | 12 |
| A£® | p¡Äq | B£® | p¡Ä£¨©Vq£© | C£® | £¨©Vp£©¡Ä£¨©Vq£© | D£® | £¨©Vp£©¡Åq |