题目内容
2.在平面直角坐标系xOy中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2=$\frac{12}{3+si{n}^{2}θ}$.(1)点A($\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且直线l过点A,求曲线C与直线l的交点坐标;
(2)过点B(-2,2)且倾斜角为$\frac{3π}{4}$的直线l1与曲线C交于M,N两点,求|BM|•|BN|的值.
分析 (1)把点A($\sqrt{2}$,$\frac{π}{4}$)代入直线l的极坐标方程ρcos(θ-$\frac{π}{4}$)=a,可得a=$\sqrt{2}$.展开$ρ×\frac{\sqrt{2}}{2}(cosθ+sinθ)$=$\sqrt{2}$,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可得出.曲线C的极坐标方程为ρ2=$\frac{12}{3+si{n}^{2}θ}$,化为3ρ2+(ρsinθ)2=12,代入$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可得出.联立解出即可得出点P,Q两点的坐标.
(II)直线l1的参数方程为:$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),代入曲线C的方程利用|BM|•|BN|=t1t2即可得出.
解答 解:(1)把点A($\sqrt{2}$,$\frac{π}{4}$)代入直线l的极坐标方程ρcos(θ-$\frac{π}{4}$)=a,可得$\sqrt{2}cos0$=a,解得a=$\sqrt{2}$.
∴$ρ×\frac{\sqrt{2}}{2}(cosθ+sinθ)$=$\sqrt{2}$,化为直角坐标方程x+y-2=0.
曲线C的极坐标方程为ρ2=$\frac{12}{3+si{n}^{2}θ}$,化为3ρ2+(ρsinθ)2=12,
∴直角坐标方程为3x2+4y2=12,化为标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
联立$\left\{\begin{array}{l}{x+y-2=0}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,化为7y2-12y=0,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{2}{7}}\\{y=\frac{12}{7}}\end{array}\right.$.
∴P(2,0),Q$(\frac{2}{7},\frac{12}{7})$.
(II)直线l1的参数方程为:$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),代入曲线C的方程为:$7{t}^{2}+28\sqrt{2}t+32$=0,
∴t1t2=$\frac{32}{7}$.
∴|BM|•|BN|=t1t2=$\frac{32}{7}$.
点评 本题考查了极坐标化为直角坐标方程的方法、直线与椭圆相交交点问题、直线的参数方程应用,考查了推理能力与计算能力,属于中档题.
| A. | 1 | B. | ±1 | C. | -1 | D. | 0 |
| A. | $\frac{529}{625}$ | B. | $\frac{96}{625}$ | C. | $\frac{23}{25}$ | D. | $\frac{2}{25}$ |
| A. | 0<a<1 | B. | 0≤a≤1 | C. | 0<a≤1 | D. | 0≤a<1 |