题目内容
设正项数列{an}的前n项和为Sn,并且对于任意n∈N*,an与1的等差中项等于
,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=an(
)n,求数列{bn}的前n项和Tn.
| Sn |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=an(
| 1 |
| 3 |
考点:数列的求和,等差数列的性质
专题:点列、递归数列与数学归纳法
分析:(Ⅰ)由an与1的等差中项等于
得递推式Sn=
,由此求出数列首项,结合an+1=Sn+1-Sn得到
{an}是以1为首项,2为公差的等差数列,则数列{an}的通项公式可求;
(Ⅱ)把数列{an}的通项公式代入bn=an(
)n,然后利用错位相减法求数列{bn}的前n项和Tn.
| Sn |
| (an+1)2 |
| 4 |
{an}是以1为首项,2为公差的等差数列,则数列{an}的通项公式可求;
(Ⅱ)把数列{an}的通项公式代入bn=an(
| 1 |
| 3 |
解答:
解:(Ⅰ)由题意知得,
=
,即Sn=
.
∴a1=S1=1.
又∵an+1=Sn+1-Sn=
[(an+1+1)2-(an+1)2],
∴(an+1-1)2-(an+1)2=0,
即(an+1+an)(an+1-an-2)=0,
∵an>0,
∴an+1-an=2,
∴{an}是以1为首项,2为公差的等差数列,
∴an=2n-1;
(2)bn=an(
)n=(2n-1)(
)n,
∴Tn=b1+b2+…+bn=1•(
)1+3•(
)2+…+(2n-1)(
)n.
Tn=1•(
)2+3•(
)3+…+(2n-3)(
)n+(2n-1)(
)n+1.
两式作差得:
Tn=
+2[(
)2+(
)3+…+(
)n]-(2n-1)(
)n+1
=
+2×
-(2n-1)(
)n+1.
∴Tn=1-
.
| Sn |
| an+1 |
| 2 |
| (an+1)2 |
| 4 |
∴a1=S1=1.
又∵an+1=Sn+1-Sn=
| 1 |
| 4 |
∴(an+1-1)2-(an+1)2=0,
即(an+1+an)(an+1-an-2)=0,
∵an>0,
∴an+1-an=2,
∴{an}是以1为首项,2为公差的等差数列,
∴an=2n-1;
(2)bn=an(
| 1 |
| 3 |
| 1 |
| 3 |
∴Tn=b1+b2+…+bn=1•(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
两式作差得:
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=
| 1 |
| 3 |
| ||||
1-
|
| 1 |
| 3 |
∴Tn=1-
| n+1 |
| 3n |
点评:本题考查了数列递推式,考查了等差关系的确定,训练了错位相减法求数列的和,是中档题.
练习册系列答案
相关题目