题目内容

2.已知圆的方程为 (x-1)2+(y-1)2=9,P(2,2)是该圆内一点,过点P的最长弦和最短弦分别为AC和BD,则AC•BD=(  )
A.$6\sqrt{5}$B.$8\sqrt{5}$C.$10\sqrt{5}$D.2$\sqrt{7}$

分析 根据题意,AC为经过点P的圆的直径,而BD是与AC垂直的弦.因此算出PM的长,利用垂直于弦的直径的性质算出BD长,

解答 解:∵圆的方程为(x-1)2+(y-1)2=9,
∴圆心坐标为M(1,1),半径r=3.
∵P(2,2)是该圆内一点,
∴经过P点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.
结合题意,得AC是经过P点的直径,BD是与AC垂直的弦.
∵|PM|=$\sqrt{(1-2)^{2}+(1-2)^{2}}$=$\sqrt{2}$,
∴由垂径定理,得|BD|=2$\sqrt{7}$.
因此,|AC|•|BD|=6×2$\sqrt{7}$=12$\sqrt{7}$.
故选D.

点评 本题给出圆内一点P,求经过点P最长的弦与最短的弦构成的四边形的面积.着重考查了圆的标准方程、两点间的距离公式和垂直于弦的直径的性质等知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网